File size: 5,483 Bytes
038f313
fab24df
c5a20a4
038f313
db00df1
0ef95ea
c6bdd15
038f313
 
 
 
0ef95ea
038f313
c58c098
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
c5a20a4
038f313
0ef95ea
 
 
 
 
 
 
f7c4208
901bafe
0ef95ea
 
038f313
c5a20a4
0ef95ea
901bafe
 
27c8b8d
a05c183
 
27c8b8d
30153c5
0ef95ea
27c8b8d
30153c5
0ef95ea
27c8b8d
901bafe
27c8b8d
0ef95ea
27c8b8d
0ef95ea
2766a54
0ef95ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901bafe
b0cbd1c
f7c4208
ca486cf
0ef95ea
a8fc89d
32cb31c
901bafe
 
fe8aa25
3be1fb9
fe8aa25
3be1fb9
901bafe
 
 
 
fe8aa25
901bafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef95ea
901bafe
 
 
 
 
0ef95ea
901bafe
2766a54
d356810
afc6022
 
901bafe
a8fc89d
b0cbd1c
0ef95ea
 
 
 
 
b0cbd1c
 
a8fc89d
30153c5
a8fc89d
198b116
30153c5
96900bb
 
 
 
 
198b116
b008d5e
a8fc89d
30153c5
 
 
901bafe
50e8a6e
901bafe
a8fc89d
df1d189
f4bcff8
df1d189
b0cbd1c
8668b24
 
 
 
3be1fb9
465e83b
9d3a4a9
465e83b
9d3a4a9
198b116
3be1fb9
a8fc89d
b0cbd1c
0ef95ea
b0cbd1c
0ef95ea
b0cbd1c
 
7bd3896
3be1fb9
a8fc89d
 
30153c5
 
 
a8fc89d
3be1fb9
a8fc89d
3be1fb9
769901b
77298b9
ec0dd4b
7e1eade
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
from openai import OpenAI
import os

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model
):

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # If user provided a model, use that; otherwise, fall back to a default model
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.1-8B-Instruct"
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")

# GRADIO UI

chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="ChatGPT is initializing...", likeable=True, layout="panel")
print("Chatbot interface created.")

system_message_box = gr.Label(value="You can select Max Tokens, Temperature, Top-P, Seed")

max_tokens_slider = gr.Slider(
    minimum=1024,
    maximum=2048,
    value=1024,
    step=100,
    label="Max new tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
    value="meta-llama/Llama-3.2-3B-Instruct",
    label="AI Mode is ",
    # info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    info="meta-llama/Llama-3.2-3B-Instruct"
)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,
       
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("Chat Interface object created.")

with demo:
    with gr.Accordion("", open=False):
        
        print("")

        models_list = [
                  
           
        ]
#     print("")
        featured_model_radio = gr.Radio(
            value="meta-llama/Llama-3.2-3B-Instruct",
            interactive=True
        )
        
#        print("Featured models radio button created.")

        def filter_models(search_term):
            print(f"Filtering models with search term: {search_term}")
            filtered = [m for m in models_list if search_term.lower() in m.lower()]
            print(f"Filtered models: {filtered}")
            return gr.update(choices=filtered)

       
#        print("Model search box change event linked.")

        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )
#       print("Featured model radio button change event linked.")

#        print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the ChatGPT-Llama.....")
    demo.launch()