File size: 10,319 Bytes
40e68f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Adapted from https://github.com/MichalGeyer/pnp-diffusers/blob/main/preprocess.py

from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler

# suppress partial model loading warning
logging.set_verbosity_error()

import os
from PIL import Image
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import argparse
from pathlib import Path
from pnp_utils import *
import torchvision.transforms as T


def get_timesteps(scheduler, num_inference_steps, strength, device):
    # get the original timestep using init_timestep
    init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

    t_start = max(num_inference_steps - init_timestep, 0)
    timesteps = scheduler.timesteps[t_start:]

    return timesteps, num_inference_steps - t_start


class Preprocess(nn.Module):
    def __init__(self, device, sd_version='2.0', hf_key=None):
        super().__init__()

        self.device = device
        self.sd_version = sd_version
        self.use_depth = False

        print(f'[INFO] loading stable diffusion...')
        if hf_key is not None:
            print(f'[INFO] using hugging face custom model key: {hf_key}')
            model_key = hf_key
        elif self.sd_version == '2.1':
            model_key = "stabilityai/stable-diffusion-2-1-base"
        elif self.sd_version == '2.0':
            model_key = "stabilityai/stable-diffusion-2-base"
        elif self.sd_version == '1.5':
            model_key = "runwayml/stable-diffusion-v1-5"
        elif self.sd_version == 'depth':
            model_key = "stabilityai/stable-diffusion-2-depth"
            self.use_depth = True
        elif self.sd_version == '1.4':
            model_key = "CompVis/stable-diffusion-v1-4"            
            
        else:
            raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')

        # Create model
        self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
                                                 torch_dtype=torch.float16).to(self.device)
        self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
        self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
                                                          torch_dtype=torch.float16).to(self.device)
        self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
                                                         torch_dtype=torch.float16).to(self.device)
        self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
        print(f'[INFO] loaded stable diffusion!')

        self.inversion_func = self.ddim_inversion

    @torch.no_grad()
    def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
        text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                    truncation=True, return_tensors='pt')
        text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
        uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
                                      return_tensors='pt')
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        return text_embeddings

    @torch.no_grad()
    def decode_latents(self, latents):
        with torch.autocast(device_type='cuda', dtype=torch.float32):
            latents = 1 / 0.18215 * latents
            imgs = self.vae.decode(latents).sample
            imgs = (imgs / 2 + 0.5).clamp(0, 1)
        return imgs

    def load_img(self, image_path):
        image_pil = T.Resize(512)(Image.open(image_path).convert("RGB"))
        image = T.ToTensor()(image_pil).unsqueeze(0).to(self.device)
        return image

    @torch.no_grad()
    def encode_imgs(self, imgs):
        with torch.autocast(device_type='cuda', dtype=torch.float32):
            imgs = 2 * imgs - 1
            posterior = self.vae.encode(imgs).latent_dist
            latents = posterior.mean * 0.18215
        return latents

    @torch.no_grad()
    def ddim_inversion(self, cond, latent, save_path, save_latents=True,
                                timesteps_to_save=None):
        timesteps = reversed(self.scheduler.timesteps)
        with torch.autocast(device_type='cuda', dtype=torch.float32):
            for i, t in enumerate(tqdm(timesteps)):
                cond_batch = cond.repeat(latent.shape[0], 1, 1)

                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                alpha_prod_t_prev = (
                    self.scheduler.alphas_cumprod[timesteps[i - 1]]
                    if i > 0 else self.scheduler.final_alpha_cumprod
                )

                mu = alpha_prod_t ** 0.5
                mu_prev = alpha_prod_t_prev ** 0.5
                sigma = (1 - alpha_prod_t) ** 0.5
                sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                eps = self.unet(latent, t, encoder_hidden_states=cond_batch).sample

                pred_x0 = (latent - sigma_prev * eps) / mu_prev
                latent = mu * pred_x0 + sigma * eps
                if save_latents:
                    torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
        torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
        return latent

    @torch.no_grad()
    def ddim_sample(self, x, cond, save_path, save_latents=False, timesteps_to_save=None):
        timesteps = self.scheduler.timesteps
        with torch.autocast(device_type='cuda', dtype=torch.float32):
            for i, t in enumerate(tqdm(timesteps)):
                    cond_batch = cond.repeat(x.shape[0], 1, 1)
                    alpha_prod_t = self.scheduler.alphas_cumprod[t]
                    alpha_prod_t_prev = (
                        self.scheduler.alphas_cumprod[timesteps[i + 1]]
                        if i < len(timesteps) - 1
                        else self.scheduler.final_alpha_cumprod
                    )
                    mu = alpha_prod_t ** 0.5
                    sigma = (1 - alpha_prod_t) ** 0.5
                    mu_prev = alpha_prod_t_prev ** 0.5
                    sigma_prev = (1 - alpha_prod_t_prev) ** 0.5

                    eps = self.unet(x, t, encoder_hidden_states=cond_batch).sample

                    pred_x0 = (x - sigma * eps) / mu
                    x = mu_prev * pred_x0 + sigma_prev * eps

            if save_latents:
                torch.save(x, os.path.join(save_path, f'noisy_latents_{t}.pt'))
        return x

    @torch.no_grad()
    def extract_latents(self, num_steps, data_path, save_path, timesteps_to_save,
                        inversion_prompt='', extract_reverse=False):
        self.scheduler.set_timesteps(num_steps)

        cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
        image = self.load_img(data_path)
        latent = self.encode_imgs(image)

        inverted_x = self.inversion_func(cond, latent, save_path, save_latents=not extract_reverse,
                                         timesteps_to_save=timesteps_to_save)
        latent_reconstruction = self.ddim_sample(inverted_x, cond, save_path, save_latents=extract_reverse,
                                                 timesteps_to_save=timesteps_to_save)
        rgb_reconstruction = self.decode_latents(latent_reconstruction)

        return rgb_reconstruction  # , latent_reconstruction


def run(opt):
    device = 'cuda'
    # timesteps to save
    if opt.sd_version == '2.1':
        model_key = "stabilityai/stable-diffusion-2-1-base"
    elif opt.sd_version == '2.0':
        model_key = "stabilityai/stable-diffusion-2-base"
    elif opt.sd_version == '1.5':
        model_key = "runwayml/stable-diffusion-v1-5"
    elif opt.sd_version == 'depth':
        model_key = "stabilityai/stable-diffusion-2-depth"
    elif opt.sd_version == '1.4':
        model_key = "CompVis/stable-diffusion-v1-4"
        
    toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
    toy_scheduler.set_timesteps(opt.save_steps)
    timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt.save_steps,
                                                           strength=1.0,
                                                           device=device)

    seed_everything(opt.seed)

    extraction_path_prefix = "_reverse" if opt.extract_reverse else "_forward"
    save_path = os.path.join(opt.save_dir + extraction_path_prefix, os.path.splitext(os.path.basename(opt.data_path))[0])
    os.makedirs(save_path, exist_ok=True)

    model = Preprocess(device, sd_version=opt.sd_version, hf_key=None)
    recon_image = model.extract_latents(data_path=opt.data_path,
                                         num_steps=opt.steps,
                                         save_path=save_path,
                                         timesteps_to_save=timesteps_to_save,
                                         inversion_prompt=opt.inversion_prompt,
                                         extract_reverse=opt.extract_reverse)

    T.ToPILImage()(recon_image[0]).save(os.path.join(save_path, f'recon.jpg'))


if __name__ == "__main__":
    device = 'cuda'
    parser = argparse.ArgumentParser()
    parser.add_argument('--data_path', type=str,
                        default='data/source_2.png')
    parser.add_argument('--save_dir', type=str, default='latents')
    parser.add_argument('--sd_version', type=str, default='1.4', choices=['1.5', '2.0', '2.1', '1.4'],
                        help="stable diffusion version")
    
    parser.add_argument('--seed', type=int, default=1)
    parser.add_argument('--steps', type=int, default=50)
    parser.add_argument('--save-steps', type=int, default=1000)
    parser.add_argument('--inversion_prompt', type=str, default='')
    parser.add_argument('--extract-reverse', default=False, action='store_true', help="extract features during the denoising process")
    
    opt = parser.parse_args()
    run(opt)