Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -14,8 +14,6 @@ pinned: false
|
|
14 |
|
15 |
# Metric Card for FBeta_Score
|
16 |
|
17 |
-
***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
|
18 |
-
|
19 |
## Metric Description
|
20 |
*Compute the F-beta score.
|
21 |
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0.
|
@@ -24,8 +22,8 @@ The beta parameter determines the weight of recall in the combined score. beta <
|
|
24 |
## How to Use
|
25 |
``` python
|
26 |
|
27 |
-
|
28 |
-
results =
|
29 |
print(results)
|
30 |
{'f_beta_score': 1.0}
|
31 |
|
|
|
14 |
|
15 |
# Metric Card for FBeta_Score
|
16 |
|
|
|
|
|
17 |
## Metric Description
|
18 |
*Compute the F-beta score.
|
19 |
The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0.
|
|
|
22 |
## How to Use
|
23 |
``` python
|
24 |
|
25 |
+
fbeta_score = evaluate.load("leslyarun/fbeta_score")
|
26 |
+
results = fbeta_score.compute(references=[0, 1], predictions=[0, 1], beta=0.5)
|
27 |
print(results)
|
28 |
{'f_beta_score': 1.0}
|
29 |
|