File size: 2,904 Bytes
dfa45b1
5f264bc
dfa45b1
54a93e4
d3653d4
380dcc1
f4619cd
b700bc7
aeb58f7
 
 
b3ae97c
8bdb3dd
dfa45b1
c5b702c
75de422
dfa45b1
 
6a833cd
 
 
3f5302d
c5b702c
54a93e4
 
 
 
380dcc1
6a833cd
dfa45b1
 
 
 
6a833cd
 
dfa45b1
f8bbfe3
dfa45b1
 
6a833cd
5bbf5a8
 
 
 
c5b702c
5bbf5a8
 
 
6a833cd
5bbf5a8
c5b702c
5bbf5a8
2200d19
5bbf5a8
1a8951a
bc8a44c
5bbf5a8
c5b702c
 
5bbf5a8
 
 
 
976568a
8d5ea99
dfa45b1
8d5ea99
dfa45b1
 
 
 
 
f8bbfe3
dfa45b1
 
 
 
0540b69
b1aaabe
0540b69
dfa45b1
0cf28f2
0540b69
dfa45b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
import os

from datetime import date
from langchain.agents import AgentType, initialize_agent, load_tools, tool
from langchain.chat_models import ChatOpenAI
from openai import OpenAI

from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

OPENWEATHERMAP_API_KEY = os.environ["OPENWEATHERMAP_API_KEY"]

config = {
    "model: "gpt-4-0613",
    "temperature": 0,
}

AGENT_OFF = False
AGENT_ON  = True

@tool
def date_tool(text: str) -> str:
    """Returns today's date. Use this for any questions related to knowing today's date. 
       The input should always be an empty string, and this function will always return today's date. 
       Any date mathematics should occur outside this function."""
    return str(date.today())

def invoke(openai_api_key, prompt, agent_option):
    if (openai_api_key == ""):
        raise gr.Error("OpenAI API Key is required.")
    if (prompt == ""):
        raise gr.Error("Prompt is required.")
    if (agent_option is None):
        raise gr.Error("Use Agent is required.")

    output = ""
    
    try:
        if (agent_option == AGENT_OFF):
            client = OpenAI(api_key = openai_api_key)
    
            completion = client.chat.completions.create(
                messages = [{"role": "user", "content": prompt}],
                model = config["model"],
                temperature = config["temperature"],)
    
            output = completion.choices[0].message.content
        else:
            llm = ChatOpenAI(
                model_name = config["model"],
                openai_api_key = openai_api_key, 
                temperature = config["temperature"])
    
            tools = load_tools(["openweathermap-api"])
            
            agent = initialize_agent(
                tools +      # built-in tools
                [date_tool], # custom tools
                llm,
                agent = AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
                handle_parsing_errors = True,
                verbose = True)

            completion = agent(prompt)
    
            output = completion["output"]
    except Exception as e:
        err_msg = e

        raise gr.Error(e)

    return output

gr.close_all()

demo = gr.Interface(fn = invoke, 
                    inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
                              gr.Textbox(label = "Prompt", lines = 1, value = "How does current weather in Los Angeles, New York, and Paris compare in metric and imperial system? Answer in JSON format and include today's date."),
                              gr.Radio([AGENT_OFF, AGENT_ON], label = "Use Agent", value = AGENT_ON)],
                    outputs = [gr.Textbox(label = "Completion", lines = 1)],
                    title = "Real-Time Reasoning Application",
                    description = os.environ["DESCRIPTION"])

demo.launch()