Spaces:
Runtime error
Runtime error
import sys | |
import os | |
import streamlit as st | |
import pandas as pd | |
import pickle | |
import datetime | |
from PIL import Image | |
# Add the root folder to the Python module search path | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) | |
from src.utils import create_dataframe, process_data | |
# Set Streamlit page configuration | |
st.set_page_config( | |
page_title="CAPE TOWN ANALYTICS", | |
page_icon="π", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'About': "# This is a header. This is an *extremely* cool app!" | |
} | |
) | |
# Define directory paths | |
DIRPATH = os.path.dirname(os.path.realpath(__file__)) | |
ml_components_1 = os.path.join(DIRPATH, "..", "assets", "ml_components", "ml_components_1.pkl") | |
ml_components_2 = os.path.join(DIRPATH, "..", "assets", "ml_components", "ml_components_2.pkl") | |
hist_df = os.path.join(DIRPATH, "..", "assets", "history.csv") | |
image_path = os.path.join(DIRPATH, "..", "assets", "images", "sales_images") | |
# check if csv file exits | |
def check_csv(csv_file, data): | |
if os.path.isfile(csv_file): | |
data.to_csv(csv_file, mode='a', header=False, encoding='utf-8', index=False) | |
else: | |
history = data.copy() | |
history.to_csv(csv_file, encoding='utf-8', index=False) | |
# Load pickle files | |
def load_pickle(filename): | |
with open(filename, 'rb') as file: | |
data = pickle.load(file) | |
return data | |
ml_compos_1 = load_pickle(ml_components_1) | |
ml_compos_2 = load_pickle(ml_components_2) | |
# Extract components from ml_compos_2 | |
categorical_pipeline = ml_compos_2['categorical_pipeline'] | |
numerical_pipeliine = ml_compos_2['numerical_pipeline'] | |
model = ml_compos_2['model'] | |
# Extract columns from ml_compos_1 | |
num_cols = ml_compos_1['num_cols'] | |
cat_cols = ml_compos_1['cat_cols'] | |
hol_level_list = ml_compos_1['Holiday_level'].tolist() | |
hol_city_list = ml_compos_1['Holiday_city'].tolist() | |
# Remove 'Not Holiday' from lists | |
hol_city_list.remove('Not Holiday') | |
hol_level_list.remove('Not Holiday') | |
# Create a container for expanding content | |
my_expander = st.container() | |
holiday_level = 'Not Holiday' | |
hol_city = 'Not Holiday' | |
# st.sidebar.selectbox('Menu', ['About', 'Model']) | |
# Expandable container for displaying content | |
with my_expander: | |
image = Image.open(image_path) | |
st.image(image, caption=None, width=None, use_column_width=None, clamp=False, channels="RGB", output_format="auto") | |
st.markdown(""" | |
<style> | |
h1 { | |
text-align: center; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
st.title('Demo Sales Forecasting :red[App]') | |
st.sidebar.markdown(""" | |
## Demo App | |
This app predict sales from the parameters on the interface | |
""") | |
# create a three column layout | |
col1, col2, col3 = st.columns(3) | |
# create a date input to receive date | |
date = col1.date_input( | |
"Enter the Date", | |
datetime.date(2019, 7, 6)) | |
# create a select box to select a family | |
item_family = col2.selectbox('What is the category of item?', | |
ml_compos_1['family']) | |
# create a select box for store city | |
store_city = col3.selectbox("Which city is the store located?", | |
ml_compos_1['Store_city']) | |
store_state = col1.selectbox("What state is the store located?", | |
ml_compos_1['Store_state']) | |
crude_price = col3.number_input('Price of Crude Oil', min_value=1.0, max_value=500.0, value=1.0) | |
day_type = col2.selectbox("Type of Day?", | |
ml_compos_1['Type_of_day'], index=2) | |
# holiday_level = col3.radio("level of Holiday?", | |
# ml_compos_1['Holiday_level']) | |
colZ, colY = st.columns(2) | |
store_type = colZ.radio("Type of store?", | |
ml_compos_1['Store_type'][::-1]) | |
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True) | |
holi = colY.empty() | |
with holi.expander(label='Holiday', expanded=False): | |
if day_type == 'Additional Holiday' or day_type == 'Holiday' or day_type=='Transferred holiday': | |
holiday_level = st.radio("level of Holiday?", | |
hol_level_list)#.tolist().remove('Not Holiday')) | |
hol_city = st.selectbox("In which city is the holiday?", | |
hol_city_list)#.tolist().remove('Not Holiday')) | |
else: | |
st.markdown('Not Holiday') | |
colA, colB, colC = st.columns(3) | |
store_number = colA.slider("Select the Store number ", | |
min_value=1, | |
max_value=54, | |
value=1) | |
store_cluster = colB.slider("Select the Store Cluster ", | |
min_value=1, | |
max_value=17, | |
value=1) | |
item_onpromo = colC.slider("Number of items onpromo ", | |
min_value=0, | |
max_value=800, | |
value=1) | |
button = st.button(label='Predict', use_container_width=True, type='primary') | |
raw_data = [date, store_number, item_family, item_onpromo, crude_price, holiday_level, hol_city, day_type, store_city, store_state, store_type, store_cluster] | |
data = create_dataframe(raw_data) | |
processed_data = process_data(data, categorical_pipeline, numerical_pipeliine, cat_cols, num_cols) | |
if button: | |
st.balloons() | |
st.metric('Predicted Sale', value=model.predict(processed_data)) | |
# predictions = model.predict(process_data) | |
csv_file = hist_df | |
check_csv(csv_file, data) | |
history = pd.read_csv(csv_file) | |
with st.expander('Download Input History'): | |
# new_history = history.iloc[1:] | |
st.dataframe(history) | |
st.download_button('Download Data', | |
history.to_csv(index=False), | |
file_name='input_history.csv') | |