bright1's picture
Added supplementary files
b36b4a2
raw
history blame
2.06 kB
import numpy as np
import pandas as pd
def payday(row):
if row.DayOfMonth == 15 or row.Is_month_end == 1:
return 1
else:
return 0
def date_extracts(data):
data['Year'] = data.index.year
data['Month'] = data.index.month
data['DayOfMonth'] = data.index.day
data['DaysInMonth'] = data.index.days_in_month
data['DayOfYear'] = data.index.day_of_year
data['DayOfWeek'] = data.index.dayofweek
data['Week'] = data.index.isocalendar().week
data['Is_weekend'] = np.where(data['DayOfWeek'] > 4, 1, 0)
data['Is_month_start'] = data.index.is_month_start.astype(int)
data['Is_month_end'] = data.index.is_month_end.astype(int)
data['Quarter'] = data.index.quarter
data['Is_quarter_start'] = data.index.is_quarter_start.astype(int)
data['Is_quarter_end'] = data.index.is_quarter_end.astype(int)
data['Is_year_start'] = data.index.is_year_start.astype(int)
data['Is_year_end'] = data.index.is_year_end.astype(int)
# the function creates a dataframe from the inputs
def create_dataframe(arr):
X = np.array([arr])
data = pd.DataFrame(X, columns=['date', 'Store_number', 'Family', 'Item_onpromo', 'Oil_prices',
'Holiday_level', 'Holiday_city','TypeOfDay', 'Store_city',
'Store_state', 'Store_type', 'Cluster'])
data[['Store_number', 'Item_onpromo', 'Cluster']] = data [['Store_number', 'Item_onpromo', 'Cluster']].apply(lambda x: x.astype(int))
data['date'] = pd.to_datetime(data['date'])
return data
def process_data(data, categorical_pipeline, numerical_pipeliine, cat_cols, num_cols):
processed_data = data.set_index('date')
date_extracts(processed_data)
processed_data['Is_payday']= processed_data[['DayOfMonth', 'Is_month_end']].apply(payday, axis=1)
processed_data[cat_cols] = categorical_pipeline.transform(processed_data[cat_cols])
processed_data[num_cols] = numerical_pipeliine.transform(processed_data[num_cols])
return processed_data