File size: 6,274 Bytes
88181da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0526fd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import pickle 
# import time
import pandas as pd
import numpy as np
from utils import create_new_columns, create_processed_dataframe


pipeline_pkl = "full_pipeline.pkl"
log_reg = "logistic_reg_class_model.pkl"

# hist_df = "history.csv"

# def check_csv(csv_file, data):
#     if os.path.isfile(csv_file):
#         data.to_csv(csv_file, mode='a', header=False, index=False, encoding='utf-8')
#     else:
#         history = data.copy()
#         history.to_csv(csv_file, index=False)







def tenure_values():
    cols = ['0-2', '3-5', '6-8', '9-11', '12-14', '15-17', '18-20', '21-23', '24-26', '27-29', '30-32', '33-35', '36-38', '39-41', '42-44', '45-47', '48-50', '51-53', '54-56', '57-59', '60-62', '63-65', '66-68', '69-71', '72-74']
    return cols

def predict_churn(gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService, 
                  OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, 
                  Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges):
    
    data = [gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines, InternetService, 
                   OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, 
                   Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges]
    
    x = np.array([data])
    dataframe = pd.DataFrame(x, columns=train_features)
    dataframe = dataframe.astype({'MonthlyCharges': 'float', 'TotalCharges': 'float', 'tenure': 'float'})
    dataframe_ = create_new_columns(dataframe)
    try:
        processed_data = pipeline.transform(dataframe_)
    except Exception as e:
        raise gr.Error('Kindly make sure to check/select all')
    else:
        # check_csv(hist_df, dataframe)
        # history = pd.read_csv(hist_df)

        processed_dataframe = create_processed_dataframe(processed_data, dataframe)
        predictions = model.predict_proba(processed_dataframe)
    return round(predictions[0][0], 3), round(predictions[0][1], 3)



theme = gr.themes.Default().set(body_background_fill="#0E1117",
                                 background_fill_secondary="#FFFFFF",
                                 background_fill_primary="#262730",
                                 body_text_color="#FF4B4B",
                                 checkbox_background_color='#FFFFFF', 
                                 button_secondary_background_fill="#FF4B4B")


def load_pickle(filename):
    with open(filename, 'rb') as file:
        data = pickle.load(file)
        return data

pipeline = load_pickle(pipeline_pkl)
model = load_pickle(log_reg)

train_features = ['gender', 'SeniorCitizen', 'Partner', 'Dependents','tenure', 'PhoneService', 'MultipleLines', 'InternetService', 
                   'OnlineSecurity', 'OnlineBackup', 'DeviceProtection','TechSupport','StreamingTV', 'StreamingMovies', 
                   'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges']


# theme = gr.themes.Base()
with  gr.Blocks(theme=theme) as demo:
    gr.HTML("""
    <h1 style="color:white; text-align:center">Customer Churn Classification App</h1>
    <h2 style="color:white;">Welcome Cherished User 👋 </h2>
    <h4 style="color:white;">Start predicting customer churn.</h4>
    
    """)
    with gr.Row():
        gender = gr.Dropdown(label='Gender', choices=['Female', 'Male'])
        Contract  = gr.Dropdown(label='Contract', choices=['Month-to-month', 'One year', 'Two year'])
        InternetService = gr.Dropdown(label='Internet Service', choices=['DSL', 'Fiber optic', 'No'])

    with gr.Accordion('Yes or no'):

        with gr.Row():
            OnlineSecurity = gr.Radio(label="Online Security", choices=["Yes", "No", "No internet service"])
            OnlineBackup = gr.Radio(label="Online Backup", choices=["Yes", "No", "No internet service"])
            DeviceProtection = gr.Radio(label="Device Protection", choices=["Yes", "No", "No internet service"])
            TechSupport = gr.Radio(label="Tech Support", choices=["Yes", "No", "No internet service"])
            StreamingTV = gr.Radio(label="TV Streaming", choices=["Yes", "No", "No internet service"])
            StreamingMovies = gr.Radio(label="Movie Streaming", choices=["Yes", "No", "No internet service"]) 
        with gr.Row():
            SeniorCitizen = gr.Radio(label="Senior Citizen", choices=["Yes", "No"])
            Partner = gr.Radio(label="Partner", choices=["Yes", "No"])
            Dependents = gr.Radio(label="Dependents", choices=["Yes", "No"])
            PaperlessBilling = gr.Radio(label="Paperless Billing", choices=["Yes", "No"])
            PhoneService = gr.Radio(label="Phone Service", choices=["Yes", "No"])
            MultipleLines = gr.Radio(label="Multiple Lines", choices=["No phone service", "Yes", "No"]) 
    
    with gr.Row():
        MonthlyCharges = gr.Number(label="Monthly Charges")
        TotalCharges = gr.Number(label="Total Charges")
        Tenure = gr.Number(label='Months of Tenure')
        PaymentMethod = gr.Dropdown(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"])

    submit_button = gr.Button('Prediction')
    # print(type([[122, 456]]))
    
    with gr.Row():
        with gr.Accordion('Churn Prediction'):
            output1 = gr.Slider(maximum=1,
                                minimum=0,
                                value=0.0,
                                label='Yes')
            output2 = gr.Slider(maximum=1,
                                minimum=0,
                                value=0.0,
                                label='No')
        # with gr.Accordion('Input History'):
        #     output3 = gr.Dataframe()

    submit_button.click(fn=predict_churn, inputs=[gender, SeniorCitizen, Partner, Dependents, Tenure, PhoneService, MultipleLines,     
                                                  InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,TechSupport,StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges], outputs=[output1, output2])


demo.launch(debug=True)