File size: 16,967 Bytes
8e018ae
 
 
e04dd70
 
c5a0a6e
 
f0ba710
 
 
55c0039
391d4c1
 
977f5f5
f0ba710
8e018ae
 
 
391d4c1
8e018ae
611f226
55c0039
 
8e018ae
e04dd70
 
8e018ae
f0ba710
 
 
 
 
 
 
8e018ae
f0ba710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e018ae
b6bc4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ba710
 
8e018ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391d4c1
 
 
 
 
8e018ae
 
02b71a7
8e018ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aadb9c7
977f5f5
 
 
 
 
 
 
aadb9c7
977f5f5
b6bc4e2
f0ba710
8e018ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cef57
 
 
 
8e018ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cef57
8e018ae
 
 
 
 
21cef57
8e018ae
 
 
 
391d4c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
977f5f5
aadb9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""Page to manage kbs"""

from __future__ import unicode_literals  # this should always be the first import
import streamlit as st
import pandas as pd
from tempfile import NamedTemporaryFile
import os
import yt_dlp as youtube_dl
from openai import OpenAI
import wave
from dotenv import load_dotenv
import requests
import uuid
import time

from retrieve_kb import get_current_knowledge_bases, get_knowledge_base_information
from generate_kb import add_links_to_knowledge_base
from app import client, default_embedding_function, show_sidebar
from langchain_text_splitters import RecursiveCharacterTextSplitter


load_dotenv()
openai_key = os.getenv("OPENAI_API_KEY")
show_sidebar()


def transcribe_audio(audio_path, openai_key, chunk_length=10000):
    """
    Transcribe audio by breaking it into chunks using wave and numpy.
    :param audio_path: Path to the audio file (e.g., "video.wav").
    :param chunk_length: Length of each audio chunk in milliseconds.
    :return: Full transcription of the audio file.
    """
    # Open the wave file
    client = OpenAI(api_key=openai_key)

    with wave.open(audio_path, "rb") as audio:
        frame_rate = audio.getframerate()
        n_channels = audio.getnchannels()
        sample_width = audio.getsampwidth()

        # Calculate the number of frames that make up the chunk_length in time
        num_frames_per_chunk = int(frame_rate * (chunk_length / 1000.0))

        # Initialize an empty string to hold the full transcription
        full_transcription = ""

        # Read and process each chunk
        while True:
            # Read frames for the chunk
            frames = audio.readframes(num_frames_per_chunk)
            if not frames:
                break

            # Export chunk to a temporary WAV file
            with wave.open("temp_chunk.wav", "wb") as chunk_audio:
                chunk_audio.setnchannels(n_channels)
                chunk_audio.setsampwidth(sample_width)
                chunk_audio.setframerate(frame_rate)
                chunk_audio.writeframes(frames)

            # Open the temporary file and send it to the API
            with open("temp_chunk.wav", "rb") as audio_file:
                response = client.audio.transcriptions.create(
                    model="whisper-1", file=audio_file
                )
                # Append the transcription to the full transcription
                full_transcription += response.text + " "

    full_transcription = full_transcription.strip()
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": "The following is the transcription of a youube video made by whisper. \
                I want you to adjust the transcription if theres is some error so that I can then insert this transcription to a vector database for retrieval for question answering. Please adkust the text if needed: ",
            },
            {"role": "user", "content": f"{full_transcription}"},
        ],
    )
    text = response.choices[0].message.content
    return text


def download_and_transcribe_youtube(youtube_url):
    ydl_opts = {
        "format": "bestaudio/best",
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "wav",
                "preferredquality": "192",
            }
        ],
        "outtmpl": "." + "/video.%(ext)s",
    }

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([youtube_url])
        info_dict = ydl.extract_info(youtube_url, download=True)
        video_title = info_dict.get("title", None)

        # audio_file = open("video.wav", "rb")
        text = transcribe_audio(audio_path="video.wav", openai_key=openai_key)
        f_out_path = f"{video_title}.txt"
        with open(f"{video_title}.txt", "w") as f_out:
            f_out.write(text)
        urls = [f_out_path]
        add_links_to_knowledge_base(
            client=client,
            kb_name=collection_name,
            urls=urls,
            youtube_optional_link=youtube_url,
            video_title=video_title,
        )
    os.remove(f"{video_title}.txt")
    os.remove("video.wav")
    os.remove("temp_chunk.wav")


if "url_list" not in st.session_state:
    st.session_state["url_list"] = []


def list_manager():
    def add_element():
        if len(user_input) > 0:
            st.session_state["url_list"] += [user_input]
        else:
            st.warning("Enter text")

    st.text("C'è un bug!!! Cliccare su add due volte!")
    with st.expander("Add urls"):
        user_input = st.text_input("Enter a url")
        add_button = st.button("Add", key="add_button")
        col1, col2 = st.columns((2))
        with col1:
            if add_button:
                add_element()
        with col2:
            if st.button("reset"):
                st.session_state["url_list"] = []
        st.write(st.session_state["url_list"])


def scrape_jina_ai(url: str) -> str:
    response = requests.get("https://r.jina.ai/" + url)
    return response.text


st.title("Manage collections")
kbs = get_current_knowledge_bases(client=client)
kbs = sorted(kb.name for kb in kbs)
collection_name = st.selectbox("Select knowledge box", kbs)
info = {}
collection = None


if "df" not in st.session_state:
    st.session_state["df"] = pd.DataFrame()

col1, col2 = st.columns(2)

if st.button("Get All"):
    collection_info, coll, client = get_knowledge_base_information(
        client=client,
        embedding_function=default_embedding_function,
        kb_name=collection_name,
    )
    st.session_state["collection"] = coll
    st.session_state["client"] = client
    collection = coll

    df = pd.DataFrame.from_records(collection_info)
    df["source"] = df["metadatas"].apply(lambda x: x.get("source", "unkown"))
    df["title"] = df["metadatas"].apply(lambda x: x.get("title", "unkown"))
    df = df[["documents", "source", "title", "ids"]]
    st.session_state["df"] = df

if len(st.session_state["df"]) != 0:
    st.dataframe(st.session_state["df"], width=3_000)
    unique_df = st.session_state["df"]["source"].unique()
    st.text(f"unique urls:  {len(unique_df)}")
    st.dataframe(unique_df)
else:
    st.warning(f"{collection_name} KB is empty")


tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(
    [
        "Remove",
        "Add URL",
        "Multiple URL",
        "Add PDF",
        "Add Youtube",
        "Notion and Jina",
        "Rename",
    ]
)

# remove stuff tab
with tab1:
    # remove a split
    st.header("Remove a split")
    id = st.text_input("Insert a split id")
    if st.button("Remove Id from collection"):
        try:
            if id in st.session_state["df"]["ids"].values.tolist():
                res = st.session_state["collection"].delete(ids=[f"{id}"])
                st.success(f"id {id} deleted")
            else:
                st.error(f"id {id} not in kb")
        except Exception as e:
            st.error(f"{str(e)}")

    # REMOVE URL
    st.header("Remove url from collection")
    url = st.text_input("remove url")
    if st.button("Remove url from collection"):
        try:
            ids = st.session_state["collection"].get(where={"source": url})["ids"]
            st.session_state["collection"].delete(ids=ids)
            st.success("deleted")
        except Exception as e:
            st.error(str(e))


# ADD URL
with tab2:
    st.header("Add url to existing collection")
    url_text = st.text_input(
        "Insert a url link",
        help="This should be text stored in a webpage like wikipedia. NB notion pages are not supported yet!",
    )
    if st.button("add url to collection"):
        urls = [url_text]  # put in a list even if only one
        res = add_links_to_knowledge_base(
            client=client, kb_name=collection_name, urls=urls
        )
        st.write(res)


# ADD CSV
with tab3:
    list_manager()

    if st.button("add csv urls to collection"):
        res = add_links_to_knowledge_base(
            client=client, kb_name=collection_name, urls=st.session_state["url_list"]
        )
        st.write(res)


# Add  PDF
with tab4:
    st.header("Add pdf to existing collection")
    st.write(
        "Trick: if you want to add a Notion page, \
        download the page as pdf, and load the pdf here together with the notion url"
    )
    uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
    pdf_optional_link = st.text_input(
        "Insert a URL link you want to associate with the pdf"
    )
    pdf_title = st.text_input("This title will be displayed as a resource in ask brian")
    if st.button("add pdf"):
        # Create a temporary file
        with NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
            # Write the uploaded PDF to the temporary file
            tmp_file.write(uploaded_file.getvalue())
            tmp_path = tmp_file.name
            print("PATH: ", tmp_path)
            urls = [tmp_path]
            res = add_links_to_knowledge_base(
                client=client,
                kb_name=collection_name,
                urls=urls,
                pdf_optional_link=pdf_optional_link,
                pdf_title=pdf_title,
            )
            st.write(res)
        # Clean up: delete the temporary file
        os.remove(tmp_path)


# Add YOUTUBE
with tab5:
    st.header("Add youtube video to collection")
    st.image(
        "",
        width=200,  # Manually Adjust the width of the image as per requirement
    )

    video_url = st.text_input("Youtube video url")
    st.text(
        "Aggiungere il video puo impiegare un bel pò. Avvia e vatti a fare una sigaretta"
    )
    if st.button("Add video"):
        # Create a temporary file
        # Write the uploaded PDF to the temporary file
        try:
            st.video(video_url)
            download_and_transcribe_youtube(video_url)
            st.success("Video Added")
        except Exception as e:
            st.error(f"{str(e)}")


with tab6:
    st.header("Add Notion with JinaAI")
    url = st.text_input("Website url")
    text = scrape_jina_ai(url=url)

    collection_info, coll, client = get_knowledge_base_information(
        client=client,
        embedding_function=default_embedding_function,
        kb_name=collection_name,
    )

    text_splitter = RecursiveCharacterTextSplitter(
        # Set a really small chunk size, just to show.
        chunk_size=1_000,
        chunk_overlap=200,
        length_function=len,
        is_separator_regex=False,
    )

    doc_list = text_splitter.create_documents([text])
    text_list = [doc.page_content for doc in doc_list]
    ids = [str(uuid.uuid4()) for _ in text_list]
    if st.button("Click button", key="jina button"):
        try:
            coll.add(
                documents=text_list,
                metadatas=[{"source": f"{url}"} for _ in text_list],
                ids=ids,
            )

            st.success("Added")
        except Exception as e:
            st.error(f"{str(e)}")

with tab7:

    # remove a split
    st.header("Rename collection")
    new_name = st.text_input("New collection name")
    collection_info, coll, client = get_knowledge_base_information(
        client=client,
        embedding_function=default_embedding_function,
        kb_name=collection_name,
    )

    if st.button("rename"):
        try:
            coll.modify(
                name=new_name,
            )
        except Exception as e:
            st.error(f"{str(e)}")
        st.success("Done")
        time.sleep(1)
        st.experimental_rerun()