Spaces:
Running
Running
File size: 13,948 Bytes
f0ba710 e04dd70 f85c548 e04dd70 c5a0a6e f0ba710 55c0039 f0ba710 611f226 55c0039 e04dd70 611f226 e04dd70 d258ef6 e04dd70 d258ef6 e04dd70 d258ef6 b6bc4e2 e04dd70 d258ef6 e04dd70 d258ef6 b6bc4e2 d258ef6 b6bc4e2 e04dd70 c5a0a6e d258ef6 c5a0a6e d258ef6 c5a0a6e b6bc4e2 e04dd70 f0ba710 b6bc4e2 f0ba710 b6bc4e2 f0ba710 b6bc4e2 f0ba710 b6bc4e2 f0ba710 b6bc4e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from __future__ import unicode_literals
import streamlit as st
from retrieve_kb import get_current_knowledge_bases, get_knowledge_base_information
from generate_kb import add_links_to_knowledge_base
from app import client, default_embedding_function
import pandas as pd
from tempfile import NamedTemporaryFile
import os
import yt_dlp as youtube_dl
from openai import OpenAI
import wave
from dotenv import load_dotenv
load_dotenv()
openai_key = os.getenv("OPENAI_API_KEY")
st.title("Manage collections")
kbs = get_current_knowledge_bases(client=client)
kbs = (kb.name for kb in kbs)
collection_name = st.selectbox("Select knowledge box", kbs)
info = {}
collection = None
if "df" not in st.session_state:
st.session_state["df"] = pd.DataFrame()
col1, col2 = st.columns(2)
if st.button("Get All"):
collection_info, coll, client = get_knowledge_base_information(
client=client,
embedding_function=default_embedding_function,
kb_name=collection_name,
)
st.session_state["collection"] = coll
st.session_state["client"] = client
collection = coll
# st.write(collection_info)
df = pd.DataFrame.from_records(collection_info)
df["source"] = df["metadatas"].apply(lambda x: x.get("source", "unkown"))
df["title"] = df["metadatas"].apply(lambda x: x.get("title", "unkown"))
df = df[["documents", "source", "title", "ids"]]
st.session_state["df"] = df
if len(st.session_state["df"]) != 0:
st.dataframe(st.session_state["df"], width=3_000)
unique_df = st.session_state["df"]["source"].unique()
st.text(f"unique urls: {len(unique_df)}")
st.dataframe(unique_df)
#############################
#### REMOVE A SPLIT #########
#############################
st.header("Remove a split")
id = st.text_input("Insert a split id")
if st.button("Remove Id from collection"):
if id in st.session_state["df"]["ids"].values.tolist():
res = st.session_state["collection"].delete(ids=[f"{id}"])
st.success(f"id {id} deleted")
else:
st.error(f"id {id} not in kb")
#############################
#### REMOVE URL ############
#############################
st.header("Remove url from collection")
url = st.text_input("remove url")
if st.button("Remove url from collection"):
try:
ids = st.session_state["collection"].get(where={"source": url})["ids"]
st.session_state["collection"].delete(ids=ids)
st.success("deleted")
except Exception as e:
st.error(str(e))
#############################
########### ADD URL #########
#############################
st.header("Add url to existing collection")
url_text = st.text_input("Insert a url link")
if st.button("add url to collection"):
urls = [url_text] # put in a list even if only one
res = add_links_to_knowledge_base(client=client, kb_name=collection_name, urls=urls)
st.write(res)
st.header("Add pdf to existing collection")
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
pdf_optional_link = st.text_input(
"Insert a URL link you want to associate with the pdf"
)
pdf_title = st.text_input("This title will be displayed as a resource in ask brian")
if st.button("add pdf"):
# Create a temporary file
with NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
# Write the uploaded PDF to the temporary file
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
print("PATH: ", tmp_path)
urls = [tmp_path]
res = add_links_to_knowledge_base(
client=client,
kb_name=collection_name,
urls=urls,
pdf_optional_link=pdf_optional_link,
pdf_title=pdf_title,
)
st.write(res)
# Clean up: delete the temporary file
os.remove(tmp_path)
#############################
########### ADD CSV #########
#############################
st.header("Add csv to existing collection")
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
df = None
if uploaded_file is not None:
try:
new_df = pd.read_csv(uploaded_file)
st.write("DataFrame:")
st.write(new_df)
except Exception as e:
st.error(str(e))
if st.button("add csv urls to collection"):
urls = new_df.values.tolist()
st.write(urls)
res = add_links_to_knowledge_base(
client=client, kb_name=collection_name, urls=urls
)
st.write(res)
#############################
########## YOUTUBE ##########
#############################
def transcribe_audio(audio_path, chunk_length=10000):
"""
Transcribe audio by breaking it into chunks using wave and numpy.
:param audio_path: Path to the audio file (e.g., "video.wav").
:param chunk_length: Length of each audio chunk in milliseconds.
:return: Full transcription of the audio file.
"""
# Open the wave file
client = OpenAI(api_key=open_ai_key)
with wave.open(audio_path, "rb") as audio:
frame_rate = audio.getframerate()
n_channels = audio.getnchannels()
sample_width = audio.getsampwidth()
# Calculate the number of frames that make up the chunk_length in time
num_frames_per_chunk = int(frame_rate * (chunk_length / 1000.0))
# Initialize an empty string to hold the full transcription
full_transcription = ""
# Read and process each chunk
while True:
# Read frames for the chunk
frames = audio.readframes(num_frames_per_chunk)
if not frames:
break
# Export chunk to a temporary WAV file
with wave.open("temp_chunk.wav", "wb") as chunk_audio:
chunk_audio.setnchannels(n_channels)
chunk_audio.setsampwidth(sample_width)
chunk_audio.setframerate(frame_rate)
chunk_audio.writeframes(frames)
# Open the temporary file and send it to the API
with open("temp_chunk.wav", "rb") as audio_file:
response = client.audio.transcriptions.create(
model="whisper-1", file=audio_file
)
# Append the transcription to the full transcription
full_transcription += response.text + " "
full_transcription = full_transcription.strip()
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": "The following is the transcription of a youube video made by whisper. \
I want you to adjust the transcription if theres is some error so that I can then insert this transcription to a vector database for retrieval for question answering. Please adkust the text if needed: ",
},
{"role": "user", "content": f"{full_transcription}"},
],
)
text = response.choices[0].message.content
return text
def download_and_transcribe_youtube(youtube_url):
ydl_opts = {
"format": "bestaudio/best",
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "wav",
"preferredquality": "192",
}
],
"outtmpl": "." + "/video.%(ext)s",
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
info_dict = ydl.extract_info(youtube_url, download=True)
video_title = info_dict.get("title", None)
# audio_file = open("video.wav", "rb")
text = transcribe_audio("video.wav")
f_out_path = f"{video_title}.txt"
with open(f"{video_title}.txt", "w") as f_out:
f_out.write(text)
urls = [f_out_path]
add_links_to_knowledge_base(
client=client,
kb_name=collection_name,
urls=urls,
youtube_optional_link=youtube_url,
video_title=video_title,
)
os.remove(f"{video_title}.txt")
os.remove("video.wav")
os.remove("temp_chunk.wav")
st.header("Add youtube video to collection")
st.image(
"",
width=200, # Manually Adjust the width of the image as per requirement
)
video_url = st.text_input("Youtube video url")
st.text("Aggiungere il video puo impiegare un bel pò. Avvia e vatti a fare una canna")
if st.button("Add video"):
# Create a temporary file
# Write the uploaded PDF to the temporary file
try:
download_and_transcribe_youtube(video_url)
st.success("Video Added")
except Exception as e:
st.error(f"{str(e)}")
|