File size: 13,948 Bytes
f0ba710
e04dd70
 
 
f85c548
e04dd70
c5a0a6e
 
f0ba710
 
 
55c0039
f0ba710
611f226
55c0039
 
e04dd70
611f226
 
 
 
e04dd70
 
 
 
 
 
 
 
 
d258ef6
e04dd70
 
 
 
 
d258ef6
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
d258ef6
b6bc4e2
 
 
e04dd70
 
 
 
d258ef6
e04dd70
 
 
 
d258ef6
b6bc4e2
 
 
d258ef6
 
 
 
 
 
 
 
 
 
 
b6bc4e2
 
 
e04dd70
 
 
 
 
 
 
c5a0a6e
 
d258ef6
 
 
 
c5a0a6e
 
 
 
 
 
 
 
 
d258ef6
 
 
 
 
c5a0a6e
 
 
 
 
b6bc4e2
 
 
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ba710
 
 
 
 
b6bc4e2
 
f0ba710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bc4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ba710
 
 
b6bc4e2
 
 
 
f0ba710
b6bc4e2
 
f0ba710
 
 
b6bc4e2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
from __future__ import unicode_literals
import streamlit as st
from retrieve_kb import get_current_knowledge_bases, get_knowledge_base_information
from generate_kb import add_links_to_knowledge_base
from app import client, default_embedding_function
import pandas as pd
from tempfile import NamedTemporaryFile
import os
import yt_dlp as youtube_dl
from openai import OpenAI
import wave
from dotenv import load_dotenv


load_dotenv()
openai_key = os.getenv("OPENAI_API_KEY")

st.title("Manage collections")
kbs = get_current_knowledge_bases(client=client)
kbs = (kb.name for kb in kbs)
collection_name = st.selectbox("Select knowledge box", kbs)
info = {}
collection = None

if "df" not in st.session_state:
    st.session_state["df"] = pd.DataFrame()

col1, col2 = st.columns(2)

if st.button("Get All"):
    collection_info, coll, client = get_knowledge_base_information(
        client=client,
        embedding_function=default_embedding_function,
        kb_name=collection_name,
    )
    st.session_state["collection"] = coll
    st.session_state["client"] = client
    collection = coll
    # st.write(collection_info)
    df = pd.DataFrame.from_records(collection_info)
    df["source"] = df["metadatas"].apply(lambda x: x.get("source", "unkown"))
    df["title"] = df["metadatas"].apply(lambda x: x.get("title", "unkown"))
    df = df[["documents", "source", "title", "ids"]]
    st.session_state["df"] = df


if len(st.session_state["df"]) != 0:
    st.dataframe(st.session_state["df"], width=3_000)
    unique_df = st.session_state["df"]["source"].unique()
    st.text(f"unique urls:  {len(unique_df)}")
    st.dataframe(unique_df)

#############################
#### REMOVE A SPLIT #########
#############################
st.header("Remove a split")
id = st.text_input("Insert a split id")
if st.button("Remove Id from collection"):
    if id in st.session_state["df"]["ids"].values.tolist():
        res = st.session_state["collection"].delete(ids=[f"{id}"])
        st.success(f"id {id} deleted")
    else:
        st.error(f"id {id} not in kb")


#############################
#### REMOVE URL ############
#############################
st.header("Remove url from collection")
url = st.text_input("remove url")
if st.button("Remove url from collection"):
    try:
        ids = st.session_state["collection"].get(where={"source": url})["ids"]
        st.session_state["collection"].delete(ids=ids)
        st.success("deleted")
    except Exception as e:
        st.error(str(e))


#############################
########### ADD URL #########
#############################
st.header("Add url to existing collection")
url_text = st.text_input("Insert a url link")
if st.button("add url to collection"):
    urls = [url_text]  # put in a list even if only one
    res = add_links_to_knowledge_base(client=client, kb_name=collection_name, urls=urls)
    st.write(res)

st.header("Add pdf to existing collection")
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
pdf_optional_link = st.text_input(
    "Insert a URL link you want to associate with the pdf"
)
pdf_title = st.text_input("This title will be displayed as a resource in ask brian")
if st.button("add pdf"):
    # Create a temporary file
    with NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
        # Write the uploaded PDF to the temporary file
        tmp_file.write(uploaded_file.getvalue())
        tmp_path = tmp_file.name
        print("PATH: ", tmp_path)
        urls = [tmp_path]
        res = add_links_to_knowledge_base(
            client=client,
            kb_name=collection_name,
            urls=urls,
            pdf_optional_link=pdf_optional_link,
            pdf_title=pdf_title,
        )
        st.write(res)
    # Clean up: delete the temporary file
    os.remove(tmp_path)

#############################
########### ADD CSV #########
#############################
st.header("Add csv to existing collection")
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
df = None

if uploaded_file is not None:
    try:
        new_df = pd.read_csv(uploaded_file)
        st.write("DataFrame:")
        st.write(new_df)
    except Exception as e:
        st.error(str(e))
    if st.button("add csv urls to collection"):
        urls = new_df.values.tolist()
        st.write(urls)
        res = add_links_to_knowledge_base(
            client=client, kb_name=collection_name, urls=urls
        )
        st.write(res)


#############################
########## YOUTUBE ##########
#############################


def transcribe_audio(audio_path, chunk_length=10000):
    """
    Transcribe audio by breaking it into chunks using wave and numpy.
    :param audio_path: Path to the audio file (e.g., "video.wav").
    :param chunk_length: Length of each audio chunk in milliseconds.
    :return: Full transcription of the audio file.
    """
    # Open the wave file
    client = OpenAI(api_key=open_ai_key)

    with wave.open(audio_path, "rb") as audio:
        frame_rate = audio.getframerate()
        n_channels = audio.getnchannels()
        sample_width = audio.getsampwidth()

        # Calculate the number of frames that make up the chunk_length in time
        num_frames_per_chunk = int(frame_rate * (chunk_length / 1000.0))

        # Initialize an empty string to hold the full transcription
        full_transcription = ""

        # Read and process each chunk
        while True:
            # Read frames for the chunk
            frames = audio.readframes(num_frames_per_chunk)
            if not frames:
                break

            # Export chunk to a temporary WAV file
            with wave.open("temp_chunk.wav", "wb") as chunk_audio:
                chunk_audio.setnchannels(n_channels)
                chunk_audio.setsampwidth(sample_width)
                chunk_audio.setframerate(frame_rate)
                chunk_audio.writeframes(frames)

            # Open the temporary file and send it to the API
            with open("temp_chunk.wav", "rb") as audio_file:
                response = client.audio.transcriptions.create(
                    model="whisper-1", file=audio_file
                )
                # Append the transcription to the full transcription
                full_transcription += response.text + " "

    full_transcription = full_transcription.strip()
    response = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": "The following is the transcription of a youube video made by whisper. \
                I want you to adjust the transcription if theres is some error so that I can then insert this transcription to a vector database for retrieval for question answering. Please adkust the text if needed: ",
            },
            {"role": "user", "content": f"{full_transcription}"},
        ],
    )
    text = response.choices[0].message.content
    return text


def download_and_transcribe_youtube(youtube_url):
    ydl_opts = {
        "format": "bestaudio/best",
        "postprocessors": [
            {
                "key": "FFmpegExtractAudio",
                "preferredcodec": "wav",
                "preferredquality": "192",
            }
        ],
        "outtmpl": "." + "/video.%(ext)s",
    }

    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        ydl.download([youtube_url])
        info_dict = ydl.extract_info(youtube_url, download=True)
        video_title = info_dict.get("title", None)

        # audio_file = open("video.wav", "rb")
        text = transcribe_audio("video.wav")
        f_out_path = f"{video_title}.txt"
        with open(f"{video_title}.txt", "w") as f_out:
            f_out.write(text)
        urls = [f_out_path]
        add_links_to_knowledge_base(
            client=client,
            kb_name=collection_name,
            urls=urls,
            youtube_optional_link=youtube_url,
            video_title=video_title,
        )
    os.remove(f"{video_title}.txt")
    os.remove("video.wav")
    os.remove("temp_chunk.wav")


st.header("Add youtube video to collection")
st.image(
    "",
    width=200,  # Manually Adjust the width of the image as per requirement
)

video_url = st.text_input("Youtube video url")
st.text("Aggiungere il video puo impiegare un bel pò. Avvia e vatti a fare una canna")
if st.button("Add video"):
    # Create a temporary file
    # Write the uploaded PDF to the temporary file
    try:
        download_and_transcribe_youtube(video_url)
        st.success("Video Added")
    except Exception as e:
        st.error(f"{str(e)}")