File size: 5,339 Bytes
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705e0de
e04dd70
 
 
 
 
 
c5a0a6e
705e0de
c5a0a6e
 
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a0a6e
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a0a6e
e04dd70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.embeddings import OpenAIEmbeddings

# from langchain_community.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from src.utils import brian_knows_system_message
from uuid import uuid4

import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions

import sys
import os
import openai
import streamlit as st
import logging

sys.path.append("../..")
from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv())  # read local .env file
# openai.api_key = os.environ["OPENAI_API_KEY"]
openai.api_key = st.secrets["OPENAI_API_KEY"]
openai_key = st.secrets["OPENAI_API_KEY"]


class VectordbManager:
    def __init__(
        self,
        knowledge_base_name: str,
    ) -> None:
        self.knowledge_base_name = knowledge_base_name
        self.vector_db = None

    def load_vectordb(
        self,
        embedding_function=OpenAIEmbeddings(),
    ):
        client = chromadb.HttpClient(
            host="chroma.brianknows.org",
            port="443",
            ssl=True,
            settings=Settings(allow_reset=True),
        )
        vectordb = Chroma(embedding_function=embedding_function, client=client)
        self.vector_db = vectordb

    def load_collection(self, embedding_function=OpenAIEmbeddings()):

        client = chromadb.HttpClient(
            host="chroma.brianknows.org",
            port=443,
            ssl=True,
            settings=Settings(
                allow_reset=True,
            ),
        )

        collection = client.get_collection(
            self.knowledge_base_name,
            embedding_function=embedding_functions.OpenAIEmbeddingFunction(
                api_key=openai_key
            ),
        )
        return collection

    def create_vector_db(self, splits: list, knowledge_base_name: str):
        logging.info("create_vector_db")
        embedding_fn = OpenAIEmbeddings()

        try:
            client = chromadb.HttpClient(
                host="chroma.brianknows.org",
                port=443,
                ssl=True,
                settings=Settings(
                    allow_reset=True,
                ),
            )
            collection = client.get_or_create_collection(
                knowledge_base_name,
                embedding_function=embedding_functions.OpenAIEmbeddingFunction(
                    api_key=openai_key
                ),
            )

            ids = []
            metadatas = []
            documents = []

            for split in splits:
                ids.append(str(uuid4()))
                metadatas.append(split.metadata)
                documents.append(split.page_content)
            collection.add(documents=documents, ids=ids, metadatas=metadatas)
            vector_db = Chroma.from_documents(
                documents=splits, embedding=embedding_fn, client=client
            )
            self.vector_db = vector_db

        except Exception as e:
            logging.error(f"error in creating db: {str(e)}")

    def add_splits_to_existing_vectordb(
        self,
        splits: list,
    ):
        for split in splits:
            try:
                self.vector_db.add_documents([split])
                print("document loaded!")
            except Exception as e:
                print(f"Error with doc : {split}")
                print(e)

    def retrieve_docs_from_query(self, query: str, k=2, fetch_k=3) -> list:
        """
        query : Text to look up documents similar to.
        k : Number of Documents to return. Defaults to 4.
        fetch_k : Number of Documents to fetch to pass to MMR algorithm.
        lambda_mult : Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
        """
        retrieved_docs = self.vector_db.max_marginal_relevance_search(
            query, k=k, fetch_k=fetch_k
        )
        return retrieved_docs

    def retrieve_qa(
        self,
        llm,
        query: str,
        score_threshold: float = 0.65,
        system_message=brian_knows_system_message,
    ):
        """return llm answer based on docs"""

        # Build prompt
        template = """You are a Web3 assistant. Use the following pieces of context to answer the question at \
            the end. If you don't know the answer, just say: "I don't know". Don't try to make up an \
                answer! Provide a always a detailed and comprehensive response. """

        fixed_template = """ {context}
        Question: {question}
        Detailed Answer:"""

        template = system_message + fixed_template

        QA_CHAIN_PROMPT = PromptTemplate.from_template(template)

        # Run chain
        qa_chain = RetrievalQA.from_chain_type(
            llm,
            retriever=self.vector_db.as_retriever(
                search_type="similarity_score_threshold",
                search_kwargs={"score_threshold": score_threshold},
            ),
            return_source_documents=True,
            chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
            # reduce_k_below_max_tokens=True,
        )
        result = qa_chain({"query": query})

        return result