File size: 3,815 Bytes
542c815
3f8e328
542c815
 
 
a888400
d6e753e
 
 
8a357d1
542c815
3267028
018621a
3267028
b98efed
542c815
 
 
 
988f91c
 
542c815
 
 
fdc77c7
542c815
 
1605763
542c815
 
 
 
 
 
 
 
 
70974c3
542c815
 
 
 
 
 
 
70974c3
542c815
 
 
949892a
542c815
68112f8
542c815
68112f8
 
542c815
 
d909bca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542c815
d909bca
 
 
 
542c815
d909bca
 
c530952
d909bca
c530952
 
 
 
 
 
 
 
6ca28a8
4941fcb
6ca28a8
d909bca
68112f8
 
 
d909bca
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple


net = BriaRMBG.from_pretrained("briaai/RMBG-1.4")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

    
def resize_image(image):
    image = image.convert('RGB')
    model_input_size = (1024, 1024)
    image = image.resize(model_input_size, Image.BILINEAR)
    return image


def process(image):

    # prepare input
    orig_image = Image.fromarray(image)
    w,h = orig_im_size = orig_image.size
    image = resize_image(orig_image)
    im_np = np.array(image)
    im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
    im_tensor = torch.unsqueeze(im_tensor,0)
    im_tensor = torch.divide(im_tensor,255.0)
    im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
    if torch.cuda.is_available():
        im_tensor=im_tensor.cuda()

    #inference
    result=net(im_tensor)
    # post process
    result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
    ma = torch.max(result)
    mi = torch.min(result)
    result = (result-mi)/(ma-mi)    
    # image to pil
    im_array = (result*255).cpu().data.numpy().astype(np.uint8)
    pil_im = Image.fromarray(np.squeeze(im_array))
    # paste the mask on the original image
    new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
    new_im.paste(orig_image, mask=pil_im)
    # new_orig_image = orig_image.convert('RGBA')

    return new_im
    # return [new_orig_image, new_im]


# block = gr.Blocks().queue()

# with block:
#     gr.Markdown("## BRIA RMBG 1.4")
#     gr.HTML('''
#       <p style="margin-bottom: 10px; font-size: 94%">
#         This is a demo for BRIA RMBG 1.4 that using
#         <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
#       </p>
#     ''')
#     with gr.Row():
#         with gr.Column():
#             input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
#             # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
#             run_button = gr.Button(value="Run")
            
#         with gr.Column():
#             result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
#     ips = [input_image]
#     run_button.click(fn=process, inputs=ips, outputs=[result_gallery])

# block.launch(debug = True)

# block = gr.Blocks().queue()

gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
  <p style="margin-bottom: 10px; font-size: 94%">
    This is a demo for BRIA RMBG 1.4 that using
    <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone. 
  </p>
''')
title = "Background Removal"
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br> 
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
"""
examples = [['./input.jpg'],]
# output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
# demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)

if __name__ == "__main__":
    demo.launch(share=False)