Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from diffusers import ControlNetModel | |
from diffusers import StableDiffusionXLControlNetPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from torchvision import transforms | |
from controlnet_aux import OpenposeDetector | |
ratios_map = { | |
0.5:{"width":704,"height":1408}, | |
0.57:{"width":768,"height":1344}, | |
0.68:{"width":832,"height":1216}, | |
0.72:{"width":832,"height":1152}, | |
0.78:{"width":896,"height":1152}, | |
0.82:{"width":896,"height":1088}, | |
0.88:{"width":960,"height":1088}, | |
0.94:{"width":960,"height":1024}, | |
1.00:{"width":1024,"height":1024}, | |
1.13:{"width":1088,"height":960}, | |
1.21:{"width":1088,"height":896}, | |
1.29:{"width":1152,"height":896}, | |
1.38:{"width":1152,"height":832}, | |
1.46:{"width":1216,"height":832}, | |
1.67:{"width":1280,"height":768}, | |
1.75:{"width":1344,"height":768}, | |
2.00:{"width":1408,"height":704} | |
} | |
ratios = np.array(list(ratios_map.keys())) | |
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
controlnet = ControlNetModel.from_pretrained( | |
"briaai/BRIA-2.3-ControlNet-Pose", | |
torch_dtype=torch.float16 | |
).to('cuda') | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"briaai/BRIA-2.3", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda').to(torch.float16) | |
pipe.scheduler = EulerAncestralDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
num_train_timesteps=1000, | |
steps_offset=1 | |
) | |
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7) | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.force_zeros_for_empty_prompt = False | |
def get_size(init_image): | |
w,h=init_image.size | |
curr_ratio = w/h | |
ind = np.argmin(np.abs(curr_ratio-ratios)) | |
ratio = ratios[ind] | |
chosen_ratio = ratios_map[ratio] | |
w,h = chosen_ratio['width'], chosen_ratio['height'] | |
return w,h | |
def resize_image(image): | |
image = image.convert('RGB') | |
w,h = get_size(image) | |
resized_image = image.resize((w, h)) | |
return resized_image | |
def resize_image_old(image): | |
image = image.convert('RGB') | |
current_size = image.size | |
if current_size[0] > current_size[1]: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
else: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
return resized_image | |
def generate_(prompt, negative_prompt, pose_image, num_steps, controlnet_conditioning_scale, seed): | |
generator = torch.Generator("cuda").manual_seed(seed) | |
images = pipe( | |
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, height=pose_image.size[1], width=pose_image.size[0], | |
).images | |
return images | |
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): | |
# resize input_image to 1024x1024 | |
input_image = resize_image(input_image) | |
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True) | |
images = generate_(prompt, negative_prompt, pose_image, num_steps, controlnet_conditioning_scale, seed) | |
return [pose_image,images[0]] | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("## BRIA 2.3 ControlNet Pose") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for ControlNet Pose that using | |
<a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">BRIA 2.3 text-to-image model</a> as backbone. | |
Trained on licensed data, BRIA 2.3 provide full legal liability coverage for copyright and privacy infringement. | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1) | |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
with gr.Row(): | |
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False) | |
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False) | |
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] | |
run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output]) | |
block.launch(debug = True) |