Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import joblib
|
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
8 |
|
9 |
# Load the emotion prediction model
|
10 |
emotion_model = load_model('lstm_model.h5')
|
@@ -18,9 +19,9 @@ emotion_model = load_model('lstm_model.h5')
|
|
18 |
# Load the tokenizer (ensure it's the one used during training)
|
19 |
tokenizer = joblib.load('tokenizer.pkl')
|
20 |
|
21 |
-
# Load the dataset
|
22 |
df = pd.read_csv('df1.csv')
|
23 |
-
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"
|
24 |
|
25 |
# Load the similarity matrix
|
26 |
similarity_matrix = np.load('similarity_matrix.npy')
|
@@ -40,6 +41,30 @@ knn = joblib.load('knn_model.joblib')
|
|
40 |
# Load the KNN recommendation function
|
41 |
recommend_knn = joblib.load('recommendation_knn_function.joblib')
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Set up the title of the app
|
44 |
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
45 |
|
@@ -48,11 +73,11 @@ query_data = df.iloc[0]
|
|
48 |
|
49 |
# Process the lyrics
|
50 |
sequence = tokenizer.texts_to_sequences([query_data['lyrics']])
|
51 |
-
padded_sequence = pad_sequences(sequence, maxlen=50)
|
52 |
emotion = emotion_model.predict(padded_sequence).flatten()
|
53 |
|
54 |
# Combine emotion and audio features for recommendation
|
55 |
-
|
56 |
|
57 |
# Generate recommendations using the hybrid model
|
58 |
hybrid_recs = hybrid_recommendation(song_index=0)
|
|
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
|
10 |
# Load the emotion prediction model
|
11 |
emotion_model = load_model('lstm_model.h5')
|
|
|
19 |
# Load the tokenizer (ensure it's the one used during training)
|
20 |
tokenizer = joblib.load('tokenizer.pkl')
|
21 |
|
22 |
+
# Load the dataset
|
23 |
df = pd.read_csv('df1.csv')
|
24 |
+
df = df.drop(['Unnamed: 0', 'lyrics_filename', 'analysis_url', 'track_href', "type", "id", "uri"], axis=1)
|
25 |
|
26 |
# Load the similarity matrix
|
27 |
similarity_matrix = np.load('similarity_matrix.npy')
|
|
|
41 |
# Load the KNN recommendation function
|
42 |
recommend_knn = joblib.load('recommendation_knn_function.joblib')
|
43 |
|
44 |
+
# Preprocess for content-based
|
45 |
+
audio_features = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
46 |
+
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
47 |
+
'duration_ms', 'time_signature']]
|
48 |
+
mood_cats = df[['mood_cats']]
|
49 |
+
|
50 |
+
scaler = StandardScaler()
|
51 |
+
audio_features_scaled = scaler.fit_transform(audio_features)
|
52 |
+
audio_features_df = pd.DataFrame(audio_features_scaled, columns=audio_features.columns)
|
53 |
+
mood_cats_df = pd.DataFrame(mood_cats)
|
54 |
+
combined_features_content = pd.concat([mood_cats_df, audio_features_df], axis=1)
|
55 |
+
|
56 |
+
# Preprocess for KNN
|
57 |
+
audio_features_knn = df[['danceability', 'energy', 'key', 'loudness', 'mode', 'speechiness',
|
58 |
+
'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo',
|
59 |
+
'duration_ms', 'time_signature']]
|
60 |
+
mood_cats_knn = df[['mood_cats']]
|
61 |
+
|
62 |
+
scaler_knn = StandardScaler()
|
63 |
+
audio_features_scaled_knn = scaler_knn.fit_transform(audio_features_knn)
|
64 |
+
audio_features_df_knn = pd.DataFrame(audio_features_scaled_knn, columns=audio_features_knn.columns)
|
65 |
+
mood_cats_df_knn = pd.DataFrame(mood_cats_knn)
|
66 |
+
combined_features_knn = pd.concat([mood_cats_df_knn, audio_features_df_knn], axis=1)
|
67 |
+
|
68 |
# Set up the title of the app
|
69 |
st.title('Emotion and Audio Feature-based Song Recommendation System')
|
70 |
|
|
|
73 |
|
74 |
# Process the lyrics
|
75 |
sequence = tokenizer.texts_to_sequences([query_data['lyrics']])
|
76 |
+
padded_sequence = pad_sequences(sequence, maxlen=50)
|
77 |
emotion = emotion_model.predict(padded_sequence).flatten()
|
78 |
|
79 |
# Combine emotion and audio features for recommendation
|
80 |
+
combined_features_hybrid = np.concatenate([emotion, query_data[audio_feature_columns].values])
|
81 |
|
82 |
# Generate recommendations using the hybrid model
|
83 |
hybrid_recs = hybrid_recommendation(song_index=0)
|