File size: 18,250 Bytes
9118de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from generation_utils import *
from utils import WriteTextMidiToFile, get_miditok
from load import LoadModel
from decoder import TextDecoder
from playback import get_music


class GenerateMidiText:
    """Generating music with Class

    LOGIC:

    FOR GENERATING FROM SCRATCH:
    - self.generate_one_new_track()
    it calls
        - self.generate_until_track_end()

    FOR GENERATING NEW BARS:
    - self.generate_one_more_bar()
    it calls
        - self.process_prompt_for_next_bar()
        - self.generate_until_track_end()"""

    def __init__(self, model, tokenizer, piece_by_track=[]):
        self.model = model
        self.tokenizer = tokenizer
        # default initialization
        self.initialize_default_parameters()
        self.initialize_dictionaries(piece_by_track)

    """Setters"""

    def initialize_default_parameters(self):
        self.set_device()
        self.set_attention_length()
        self.generate_until = "TRACK_END"
        self.set_force_sequence_lenth()
        self.set_nb_bars_generated()
        self.set_improvisation_level(0)

    def initialize_dictionaries(self, piece_by_track):
        self.piece_by_track = piece_by_track

    def set_device(self, device="cpu"):
        self.device = ("cpu",)

    def set_attention_length(self):
        self.max_length = self.model.config.n_positions
        print(
            f"Attention length set to {self.max_length} -> 'model.config.n_positions'"
        )

    def set_force_sequence_lenth(self, force_sequence_length=True):
        self.force_sequence_length = force_sequence_length

    def set_improvisation_level(self, improvisation_value):
        self.no_repeat_ngram_size = improvisation_value
        print("--------------------")
        print(f"no_repeat_ngram_size set to {improvisation_value}")
        print("--------------------")

    def reset_temperatures(self, track_id, temperature):
        self.piece_by_track[track_id]["temperature"] = temperature

    def set_nb_bars_generated(self, n_bars=8):  # default is a 8 bar model
        self.model_n_bar = n_bars

    """ Generation Tools - Dictionnaries """

    def initiate_track_dict(self, instr, density, temperature):
        label = len(self.piece_by_track)
        self.piece_by_track.append(
            {
                "label": f"track_{label}",
                "instrument": instr,
                "density": density,
                "temperature": temperature,
                "bars": [],
            }
        )

    def update_track_dict__add_bars(self, bars, track_id):
        """Add bars to the track dictionnary"""
        for bar in self.striping_track_ends(bars).split("BAR_START "):
            if bar == "":  # happens is there is one bar only
                continue
            else:
                if "TRACK_START" in bar:
                    self.piece_by_track[track_id]["bars"].append(bar)
                else:
                    self.piece_by_track[track_id]["bars"].append("BAR_START " + bar)

    def get_all_instr_bars(self, track_id):
        return self.piece_by_track[track_id]["bars"]

    def striping_track_ends(self, text):
        if "TRACK_END" in text:
            # first get rid of extra space if any
            # then gets rid of "TRACK_END"
            text = text.rstrip(" ").rstrip("TRACK_END")
        return text

    def get_last_generated_track(self, full_piece):
        track = (
            "TRACK_START "
            + self.striping_track_ends(full_piece.split("TRACK_START ")[-1])
            + "TRACK_END "
        )  # forcing the space after track and
        return track

    def get_selected_track_as_text(self, track_id):
        text = ""
        for bar in self.piece_by_track[track_id]["bars"]:
            text += bar
        text += "TRACK_END "
        return text

    @staticmethod
    def get_newly_generated_text(input_prompt, full_piece):
        return full_piece[len(input_prompt) :]

    def get_whole_piece_from_bar_dict(self):
        text = "PIECE_START "
        for track_id, _ in enumerate(self.piece_by_track):
            text += self.get_selected_track_as_text(track_id)
        return text

    def delete_one_track(self, track):  # TO BE TESTED
        self.piece_by_track.pop(track)

    # def update_piece_dict__add_track(self, track_id, track):
    #     self.piece_dict[track_id] = track

    # def update_all_dictionnaries__add_track(self, track):
    # self.update_piece_dict__add_track(track_id, track)

    """Basic generation tools"""

    def tokenize_input_prompt(self, input_prompt, verbose=True):
        """Tokenizing prompt

        Args:
        - input_prompt (str): prompt to tokenize

        Returns:
        - input_prompt_ids (torch.tensor): tokenized prompt
        """
        if verbose:
            print("Tokenizing input_prompt...")

        return self.tokenizer.encode(input_prompt, return_tensors="pt")

    def generate_sequence_of_token_ids(
        self,
        input_prompt_ids,
        temperature,
        verbose=True,
    ):
        """
        generate a sequence of token ids based on input_prompt_ids
        The sequence length depends on the trained model (self.model_n_bar)
        """
        generated_ids = self.model.generate(
            input_prompt_ids,
            max_length=self.max_length,
            do_sample=True,
            temperature=temperature,
            no_repeat_ngram_size=self.no_repeat_ngram_size,  # default = 0
            eos_token_id=self.tokenizer.encode(self.generate_until)[0],  # good
        )

        if verbose:
            print("Generating a token_id sequence...")

        return generated_ids

    def convert_ids_to_text(self, generated_ids, verbose=True):
        """converts the token_ids to text"""
        generated_text = self.tokenizer.decode(generated_ids[0])
        if verbose:
            print("Converting token sequence to MidiText...")
        return generated_text

    def generate_until_track_end(
        self,
        input_prompt="PIECE_START ",
        instrument=None,
        density=None,
        temperature=None,
        verbose=True,
        expected_length=None,
    ):

        """generate until the TRACK_END token is reached
        full_piece = input_prompt + generated"""
        if expected_length is None:
            expected_length = self.model_n_bar

        if instrument is not None:
            input_prompt = f"{input_prompt}TRACK_START INST={str(instrument)} "
            if density is not None:
                input_prompt = f"{input_prompt}DENSITY={str(density)} "

        if instrument is None and density is not None:
            print("Density cannot be defined without an input_prompt instrument #TOFIX")

        if temperature is None:
            ValueError("Temperature must be defined")

        if verbose:
            print("--------------------")
            print(
                f"Generating {instrument} - Density {density} - temperature {temperature}"
            )
        bar_count_checks = False
        failed = 0
        while not bar_count_checks:  # regenerate until right length
            input_prompt_ids = self.tokenize_input_prompt(input_prompt, verbose=verbose)
            generated_tokens = self.generate_sequence_of_token_ids(
                input_prompt_ids, temperature, verbose=verbose
            )
            full_piece = self.convert_ids_to_text(generated_tokens, verbose=verbose)
            generated = self.get_newly_generated_text(input_prompt, full_piece)
            # bar_count_checks
            bar_count_checks, bar_count = bar_count_check(generated, expected_length)

            if not self.force_sequence_length:
                # set bar_count_checks to true to exist the while loop
                bar_count_checks = True

            if not bar_count_checks and self.force_sequence_length:
                # if the generated sequence is not the expected length
                if failed > -1:  # deactivated for speed
                    full_piece, bar_count_checks = forcing_bar_count(
                        input_prompt,
                        generated,
                        bar_count,
                        expected_length,
                    )
                else:
                    print('"--- Wrong length - Regenerating ---')
            if not bar_count_checks:
                failed += 1
                if failed > 2:
                    bar_count_checks = True  # TOFIX exit the while loop

        return full_piece

    def generate_one_new_track(
        self,
        instrument,
        density,
        temperature,
        input_prompt="PIECE_START ",
    ):
        self.initiate_track_dict(instrument, density, temperature)
        full_piece = self.generate_until_track_end(
            input_prompt=input_prompt,
            instrument=instrument,
            density=density,
            temperature=temperature,
        )

        track = self.get_last_generated_track(full_piece)
        self.update_track_dict__add_bars(track, -1)
        full_piece = self.get_whole_piece_from_bar_dict()
        return full_piece

    """ Piece generation - Basics """

    def generate_piece(self, instrument_list, density_list, temperature_list):
        """generate a sequence with mutiple tracks
        - inst_list sets the list of instruments of the order of generation
        - density is paired with inst_list
        Each track/intrument is generated on a prompt which contains the previously generated track/instrument
        This means that the first instrument is generated with less bias than the next one, and so on.

        'generated_piece' keeps track of the entire piece
        'generated_piece' is returned by self.generate_until_track_end
        # it is returned by self.generate_until_track_end"""

        generated_piece = "PIECE_START "
        for instrument, density, temperature in zip(
            instrument_list, density_list, temperature_list
        ):
            generated_piece = self.generate_one_new_track(
                instrument,
                density,
                temperature,
                input_prompt=generated_piece,
            )

        # generated_piece = self.get_whole_piece_from_bar_dict()
        self.check_the_piece_for_errors()
        return generated_piece

    """ Piece generation - Extra Bars """

    @staticmethod
    def process_prompt_for_next_bar(self, track_idx):
        """Processing the prompt for the model to generate one more bar only.
        The prompt containts:
                if not the first bar: the previous, already processed, bars of the track
                the bar initialization (ex: "TRACK_START INST=DRUMS DENSITY=2 ")
                the last (self.model_n_bar)-1 bars of the track
        Args:
            track_idx (int): the index of the track to be processed

        Returns:
            the processed prompt for generating the next bar
        """
        track = self.piece_by_track[track_idx]
        # for bars which are not the bar to prolong
        pre_promt = "PIECE_START "
        for i, othertrack in enumerate(self.piece_by_track):
            if i != track_idx:
                len_diff = len(othertrack["bars"]) - len(track["bars"])
                if len_diff > 0:
                    # if other bars are longer, it mean that this one should catch up
                    pre_promt += othertrack["bars"][0]
                    for bar in track["bars"][-self.model_n_bar :]:
                        pre_promt += bar
                    pre_promt += "TRACK_END "
                elif False:  # len_diff <= 0: # THIS GENERATES EMPTINESS
                    # adding an empty bars at the end of the other tracks if they have not been processed yet
                    pre_promt += othertracks["bars"][0]
                    for bar in track["bars"][-(self.model_n_bar - 1) :]:
                        pre_promt += bar
                    for _ in range(abs(len_diff) + 1):
                        pre_promt += "BAR_START BAR_END "
                    pre_promt += "TRACK_END "

        # for the bar to prolong
        # initialization e.g TRACK_START INST=DRUMS DENSITY=2
        processed_prompt = track["bars"][0]
        for bar in track["bars"][-(self.model_n_bar - 1) :]:
            # adding the "last" bars of the track
            processed_prompt += bar

        processed_prompt += "BAR_START "
        print(
            f"--- prompt length = {len((pre_promt + processed_prompt).split(' '))} ---"
        )
        return pre_promt + processed_prompt

    def generate_one_more_bar(self, i):
        """Generate one more bar from the input_prompt"""
        processed_prompt = self.process_prompt_for_next_bar(self, i)
        prompt_plus_bar = self.generate_until_track_end(
            input_prompt=processed_prompt,
            temperature=self.piece_by_track[i]["temperature"],
            expected_length=1,
            verbose=False,
        )
        added_bar = self.get_newly_generated_bar(prompt_plus_bar)
        self.update_track_dict__add_bars(added_bar, i)

    def get_newly_generated_bar(self, prompt_plus_bar):
        return "BAR_START " + self.striping_track_ends(
            prompt_plus_bar.split("BAR_START ")[-1]
        )

    def generate_n_more_bars(self, n_bars, only_this_track=None, verbose=True):
        """Generate n more bars from the input_prompt"""
        if only_this_track is None:
            only_this_track

        print(f"================== ")
        print(f"Adding {n_bars} more bars to the piece ")
        for bar_id in range(n_bars):
            print(f"----- added bar #{bar_id+1} --")
            for i, track in enumerate(self.piece_by_track):
                if only_this_track is None or i == only_this_track:
                    print(f"--------- {track['label']}")
                    self.generate_one_more_bar(i)
        self.check_the_piece_for_errors()

    def check_the_piece_for_errors(self, piece: str = None):

        if piece is None:
            piece = generate_midi.get_whole_piece_from_bar_dict()
        errors = []
        errors.append(
            [
                (token, id)
                for id, token in enumerate(piece.split(" "))
                if token not in self.tokenizer.vocab or token == "UNK"
            ]
        )
        if len(errors) > 0:
            # print(piece)
            for er in errors:
                er
                print(f"Token not found in the piece at {er[0][1]}: {er[0][0]}")
                print(piece.split(" ")[er[0][1] - 5 : er[0][1] + 5])


if __name__ == "__main__":

    # worker
    DEVICE = "cpu"

    # define generation parameters
    N_FILES_TO_GENERATE = 2
    Temperatures_to_try = [0.7]

    USE_FAMILIZED_MODEL = True
    force_sequence_length = True

    if USE_FAMILIZED_MODEL:
        # model_repo = "misnaej/the-jam-machine-elec-famil"
        # model_repo = "misnaej/the-jam-machine-elec-famil-ft32"

        # model_repo = "JammyMachina/elec-gmusic-familized-model-13-12__17-35-53"
        # n_bar_generated = 8

        model_repo = "JammyMachina/improved_4bars-mdl"
        n_bar_generated = 4
        instrument_promt_list = ["4", "DRUMS", "3"]
        # DRUMS = drums, 0 = piano, 1 = chromatic percussion, 2 = organ, 3 = guitar, 4 = bass, 5 = strings, 6 = ensemble, 7 = brass, 8 = reed, 9 = pipe, 10 = synth lead, 11 = synth pad, 12 = synth effects, 13 = ethnic, 14 = percussive, 15 = sound effects
        density_list = [3, 2, 2]
        # temperature_list = [0.7, 0.7, 0.75]
    else:
        model_repo = "misnaej/the-jam-machine"
        instrument_promt_list = ["30"]  # , "DRUMS", "0"]
        density_list = [3]  # , 2, 3]
        # temperature_list = [0.7, 0.5, 0.75]
        pass

    # define generation directory
    generated_sequence_files_path = define_generation_dir(model_repo)

    # load model and tokenizer
    model, tokenizer = LoadModel(
        model_repo, from_huggingface=True
    ).load_model_and_tokenizer()

    # does the prompt make sense
    check_if_prompt_inst_in_tokenizer_vocab(tokenizer, instrument_promt_list)

    for temperature in Temperatures_to_try:
        print(f"================= TEMPERATURE {temperature} =======================")
        for _ in range(N_FILES_TO_GENERATE):
            print(f"========================================")
            # 1 - instantiate
            generate_midi = GenerateMidiText(model, tokenizer)
            # 0 - set the n_bar for this model
            generate_midi.set_nb_bars_generated(n_bars=n_bar_generated)
            # 1 - defines the instruments, densities and temperatures
            # 2- generate the first 8 bars for each instrument
            generate_midi.set_improvisation_level(30)
            generate_midi.generate_piece(
                instrument_promt_list,
                density_list,
                [temperature for _ in density_list],
            )
            # 3 - force the model to improvise
            # generate_midi.set_improvisation_level(20)
            # 4 - generate the next 4 bars for each instrument
            # generate_midi.generate_n_more_bars(n_bar_generated)
            # 5 - lower the improvisation level
            generate_midi.generated_piece = (
                generate_midi.get_whole_piece_from_bar_dict()
            )

            # print the generated sequence in terminal
            print("=========================================")
            print(generate_midi.generated_piece)
            print("=========================================")

            # write to JSON file
            filename = WriteTextMidiToFile(
                generate_midi,
                generated_sequence_files_path,
            ).text_midi_to_file()

            # decode the sequence to MIDI """
            decode_tokenizer = get_miditok()
            TextDecoder(decode_tokenizer, USE_FAMILIZED_MODEL).get_midi(
                generate_midi.generated_piece, filename=filename.split(".")[0] + ".mid"
            )
            inst_midi, mixed_audio = get_music(filename.split(".")[0] + ".mid")
            max_time = get_max_time(inst_midi)
            plot_piano_roll(inst_midi)

            print("Et voilà! Your MIDI file is ready! GO JAM!")