brandonsmart's picture
Initial commit
5ed9923
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R Fast Nearest Neighbor
# --------------------------------------------------------
import torch
import numpy as np
import math
from scipy.spatial import KDTree
import mast3r.utils.path_to_dust3r # noqa
from dust3r.utils.device import to_numpy, todevice # noqa
@torch.no_grad()
def bruteforce_reciprocal_nns(A, B, device='cuda', block_size=None, dist='l2'):
if isinstance(A, np.ndarray):
A = torch.from_numpy(A).to(device)
if isinstance(B, np.ndarray):
B = torch.from_numpy(B).to(device)
A = A.to(device)
B = B.to(device)
if dist == 'l2':
dist_func = torch.cdist
argmin = torch.min
elif dist == 'dot':
def dist_func(A, B):
return A @ B.T
def argmin(X, dim):
sim, nn = torch.max(X, dim=dim)
return sim.neg_(), nn
else:
raise ValueError(f'Unknown {dist=}')
if block_size is None or len(A) * len(B) <= block_size**2:
dists = dist_func(A, B)
_, nn_A = argmin(dists, dim=1)
_, nn_B = argmin(dists, dim=0)
else:
dis_A = torch.full((A.shape[0],), float('inf'), device=device, dtype=A.dtype)
dis_B = torch.full((B.shape[0],), float('inf'), device=device, dtype=B.dtype)
nn_A = torch.full((A.shape[0],), -1, device=device, dtype=torch.int64)
nn_B = torch.full((B.shape[0],), -1, device=device, dtype=torch.int64)
number_of_iteration_A = math.ceil(A.shape[0] / block_size)
number_of_iteration_B = math.ceil(B.shape[0] / block_size)
for i in range(number_of_iteration_A):
A_i = A[i * block_size:(i + 1) * block_size]
for j in range(number_of_iteration_B):
B_j = B[j * block_size:(j + 1) * block_size]
dists_blk = dist_func(A_i, B_j) # A, B, 1
# dists_blk = dists[i * block_size:(i+1)*block_size, j * block_size:(j+1)*block_size]
min_A_i, argmin_A_i = argmin(dists_blk, dim=1)
min_B_j, argmin_B_j = argmin(dists_blk, dim=0)
col_mask = min_A_i < dis_A[i * block_size:(i + 1) * block_size]
line_mask = min_B_j < dis_B[j * block_size:(j + 1) * block_size]
dis_A[i * block_size:(i + 1) * block_size][col_mask] = min_A_i[col_mask]
dis_B[j * block_size:(j + 1) * block_size][line_mask] = min_B_j[line_mask]
nn_A[i * block_size:(i + 1) * block_size][col_mask] = argmin_A_i[col_mask] + (j * block_size)
nn_B[j * block_size:(j + 1) * block_size][line_mask] = argmin_B_j[line_mask] + (i * block_size)
nn_A = nn_A.cpu().numpy()
nn_B = nn_B.cpu().numpy()
return nn_A, nn_B
class cdistMatcher:
def __init__(self, db_pts, device='cuda'):
self.db_pts = db_pts.to(device)
self.device = device
def query(self, queries, k=1, **kw):
assert k == 1
if queries.numel() == 0:
return None, []
nnA, nnB = bruteforce_reciprocal_nns(queries, self.db_pts, device=self.device, **kw)
dis = None
return dis, nnA
def merge_corres(idx1, idx2, shape1=None, shape2=None, ret_xy=True, ret_index=False):
assert idx1.dtype == idx2.dtype == np.int32
# unique and sort along idx1
corres = np.unique(np.c_[idx2, idx1].view(np.int64), return_index=ret_index)
if ret_index:
corres, indices = corres
xy2, xy1 = corres[:, None].view(np.int32).T
if ret_xy:
assert shape1 and shape2
xy1 = np.unravel_index(xy1, shape1)
xy2 = np.unravel_index(xy2, shape2)
if ret_xy != 'y_x':
xy1 = xy1[0].base[:, ::-1]
xy2 = xy2[0].base[:, ::-1]
if ret_index:
return xy1, xy2, indices
return xy1, xy2
def fast_reciprocal_NNs(pts1, pts2, subsample_or_initxy1=8, ret_xy=True, pixel_tol=0, ret_basin=False,
device='cuda', **matcher_kw):
H1, W1, DIM1 = pts1.shape
H2, W2, DIM2 = pts2.shape
assert DIM1 == DIM2
pts1 = pts1.reshape(-1, DIM1)
pts2 = pts2.reshape(-1, DIM2)
if isinstance(subsample_or_initxy1, int) and pixel_tol == 0:
S = subsample_or_initxy1
y1, x1 = np.mgrid[S // 2:H1:S, S // 2:W1:S].reshape(2, -1)
max_iter = 10
else:
x1, y1 = subsample_or_initxy1
if isinstance(x1, torch.Tensor):
x1 = x1.cpu().numpy()
if isinstance(y1, torch.Tensor):
y1 = y1.cpu().numpy()
max_iter = 1
xy1 = np.int32(np.unique(x1 + W1 * y1)) # make sure there's no doublons
xy2 = np.full_like(xy1, -1)
old_xy1 = xy1.copy()
old_xy2 = xy2.copy()
if 'dist' in matcher_kw or 'block_size' in matcher_kw \
or (isinstance(device, str) and device.startswith('cuda')) \
or (isinstance(device, torch.device) and device.type.startswith('cuda')):
pts1 = pts1.to(device)
pts2 = pts2.to(device)
tree1 = cdistMatcher(pts1, device=device)
tree2 = cdistMatcher(pts2, device=device)
else:
pts1, pts2 = to_numpy((pts1, pts2))
tree1 = KDTree(pts1)
tree2 = KDTree(pts2)
notyet = np.ones(len(xy1), dtype=bool)
basin = np.full((H1 * W1 + 1,), -1, dtype=np.int32) if ret_basin else None
niter = 0
# n_notyet = [len(notyet)]
while notyet.any():
_, xy2[notyet] = to_numpy(tree2.query(pts1[xy1[notyet]], **matcher_kw))
if not ret_basin:
notyet &= (old_xy2 != xy2) # remove points that have converged
_, xy1[notyet] = to_numpy(tree1.query(pts2[xy2[notyet]], **matcher_kw))
if ret_basin:
basin[old_xy1[notyet]] = xy1[notyet]
notyet &= (old_xy1 != xy1) # remove points that have converged
# n_notyet.append(notyet.sum())
niter += 1
if niter >= max_iter:
break
old_xy2[:] = xy2
old_xy1[:] = xy1
# print('notyet_stats:', ' '.join(map(str, (n_notyet+[0]*10)[:max_iter])))
if pixel_tol > 0:
# in case we only want to match some specific points
# and still have some way of checking reciprocity
old_yx1 = np.unravel_index(old_xy1, (H1, W1))[0].base
new_yx1 = np.unravel_index(xy1, (H1, W1))[0].base
dis = np.linalg.norm(old_yx1 - new_yx1, axis=-1)
converged = dis < pixel_tol
if not isinstance(subsample_or_initxy1, int):
xy1 = old_xy1 # replace new points by old ones
else:
converged = ~notyet # converged correspondences
# keep only unique correspondences, and sort on xy1
xy1, xy2 = merge_corres(xy1[converged], xy2[converged], (H1, W1), (H2, W2), ret_xy=ret_xy)
if ret_basin:
return xy1, xy2, basin
return xy1, xy2
def extract_correspondences_nonsym(A, B, confA, confB, subsample=8, device=None, ptmap_key='pred_desc', pixel_tol=0):
if '3d' in ptmap_key:
opt = dict(device='cpu', workers=32)
else:
opt = dict(device=device, dist='dot', block_size=2**13)
# matching the two pairs
idx1 = []
idx2 = []
# merge corres from opposite pairs
HA, WA = A.shape[:2]
HB, WB = B.shape[:2]
if pixel_tol == 0:
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt)
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt)
else:
S = subsample
yA, xA = np.mgrid[S // 2:HA:S, S // 2:WA:S].reshape(2, -1)
yB, xB = np.mgrid[S // 2:HB:S, S // 2:WB:S].reshape(2, -1)
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=(xA, yA), ret_xy=False, pixel_tol=pixel_tol, **opt)
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=(xB, yB), ret_xy=False, pixel_tol=pixel_tol, **opt)
idx1 = np.r_[nn1to2[0], nn2to1[1]]
idx2 = np.r_[nn1to2[1], nn2to1[0]]
c1 = confA.ravel()[idx1]
c2 = confB.ravel()[idx2]
xy1, xy2, idx = merge_corres(idx1, idx2, (HA, WA), (HB, WB), ret_xy=True, ret_index=True)
conf = np.minimum(c1[idx], c2[idx])
corres = (xy1.copy(), xy2.copy(), conf)
return todevice(corres, device)