Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# MASt3R Fast Nearest Neighbor | |
# -------------------------------------------------------- | |
import torch | |
import numpy as np | |
import math | |
from scipy.spatial import KDTree | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.utils.device import to_numpy, todevice # noqa | |
def bruteforce_reciprocal_nns(A, B, device='cuda', block_size=None, dist='l2'): | |
if isinstance(A, np.ndarray): | |
A = torch.from_numpy(A).to(device) | |
if isinstance(B, np.ndarray): | |
B = torch.from_numpy(B).to(device) | |
A = A.to(device) | |
B = B.to(device) | |
if dist == 'l2': | |
dist_func = torch.cdist | |
argmin = torch.min | |
elif dist == 'dot': | |
def dist_func(A, B): | |
return A @ B.T | |
def argmin(X, dim): | |
sim, nn = torch.max(X, dim=dim) | |
return sim.neg_(), nn | |
else: | |
raise ValueError(f'Unknown {dist=}') | |
if block_size is None or len(A) * len(B) <= block_size**2: | |
dists = dist_func(A, B) | |
_, nn_A = argmin(dists, dim=1) | |
_, nn_B = argmin(dists, dim=0) | |
else: | |
dis_A = torch.full((A.shape[0],), float('inf'), device=device, dtype=A.dtype) | |
dis_B = torch.full((B.shape[0],), float('inf'), device=device, dtype=B.dtype) | |
nn_A = torch.full((A.shape[0],), -1, device=device, dtype=torch.int64) | |
nn_B = torch.full((B.shape[0],), -1, device=device, dtype=torch.int64) | |
number_of_iteration_A = math.ceil(A.shape[0] / block_size) | |
number_of_iteration_B = math.ceil(B.shape[0] / block_size) | |
for i in range(number_of_iteration_A): | |
A_i = A[i * block_size:(i + 1) * block_size] | |
for j in range(number_of_iteration_B): | |
B_j = B[j * block_size:(j + 1) * block_size] | |
dists_blk = dist_func(A_i, B_j) # A, B, 1 | |
# dists_blk = dists[i * block_size:(i+1)*block_size, j * block_size:(j+1)*block_size] | |
min_A_i, argmin_A_i = argmin(dists_blk, dim=1) | |
min_B_j, argmin_B_j = argmin(dists_blk, dim=0) | |
col_mask = min_A_i < dis_A[i * block_size:(i + 1) * block_size] | |
line_mask = min_B_j < dis_B[j * block_size:(j + 1) * block_size] | |
dis_A[i * block_size:(i + 1) * block_size][col_mask] = min_A_i[col_mask] | |
dis_B[j * block_size:(j + 1) * block_size][line_mask] = min_B_j[line_mask] | |
nn_A[i * block_size:(i + 1) * block_size][col_mask] = argmin_A_i[col_mask] + (j * block_size) | |
nn_B[j * block_size:(j + 1) * block_size][line_mask] = argmin_B_j[line_mask] + (i * block_size) | |
nn_A = nn_A.cpu().numpy() | |
nn_B = nn_B.cpu().numpy() | |
return nn_A, nn_B | |
class cdistMatcher: | |
def __init__(self, db_pts, device='cuda'): | |
self.db_pts = db_pts.to(device) | |
self.device = device | |
def query(self, queries, k=1, **kw): | |
assert k == 1 | |
if queries.numel() == 0: | |
return None, [] | |
nnA, nnB = bruteforce_reciprocal_nns(queries, self.db_pts, device=self.device, **kw) | |
dis = None | |
return dis, nnA | |
def merge_corres(idx1, idx2, shape1=None, shape2=None, ret_xy=True, ret_index=False): | |
assert idx1.dtype == idx2.dtype == np.int32 | |
# unique and sort along idx1 | |
corres = np.unique(np.c_[idx2, idx1].view(np.int64), return_index=ret_index) | |
if ret_index: | |
corres, indices = corres | |
xy2, xy1 = corres[:, None].view(np.int32).T | |
if ret_xy: | |
assert shape1 and shape2 | |
xy1 = np.unravel_index(xy1, shape1) | |
xy2 = np.unravel_index(xy2, shape2) | |
if ret_xy != 'y_x': | |
xy1 = xy1[0].base[:, ::-1] | |
xy2 = xy2[0].base[:, ::-1] | |
if ret_index: | |
return xy1, xy2, indices | |
return xy1, xy2 | |
def fast_reciprocal_NNs(pts1, pts2, subsample_or_initxy1=8, ret_xy=True, pixel_tol=0, ret_basin=False, | |
device='cuda', **matcher_kw): | |
H1, W1, DIM1 = pts1.shape | |
H2, W2, DIM2 = pts2.shape | |
assert DIM1 == DIM2 | |
pts1 = pts1.reshape(-1, DIM1) | |
pts2 = pts2.reshape(-1, DIM2) | |
if isinstance(subsample_or_initxy1, int) and pixel_tol == 0: | |
S = subsample_or_initxy1 | |
y1, x1 = np.mgrid[S // 2:H1:S, S // 2:W1:S].reshape(2, -1) | |
max_iter = 10 | |
else: | |
x1, y1 = subsample_or_initxy1 | |
if isinstance(x1, torch.Tensor): | |
x1 = x1.cpu().numpy() | |
if isinstance(y1, torch.Tensor): | |
y1 = y1.cpu().numpy() | |
max_iter = 1 | |
xy1 = np.int32(np.unique(x1 + W1 * y1)) # make sure there's no doublons | |
xy2 = np.full_like(xy1, -1) | |
old_xy1 = xy1.copy() | |
old_xy2 = xy2.copy() | |
if 'dist' in matcher_kw or 'block_size' in matcher_kw \ | |
or (isinstance(device, str) and device.startswith('cuda')) \ | |
or (isinstance(device, torch.device) and device.type.startswith('cuda')): | |
pts1 = pts1.to(device) | |
pts2 = pts2.to(device) | |
tree1 = cdistMatcher(pts1, device=device) | |
tree2 = cdistMatcher(pts2, device=device) | |
else: | |
pts1, pts2 = to_numpy((pts1, pts2)) | |
tree1 = KDTree(pts1) | |
tree2 = KDTree(pts2) | |
notyet = np.ones(len(xy1), dtype=bool) | |
basin = np.full((H1 * W1 + 1,), -1, dtype=np.int32) if ret_basin else None | |
niter = 0 | |
# n_notyet = [len(notyet)] | |
while notyet.any(): | |
_, xy2[notyet] = to_numpy(tree2.query(pts1[xy1[notyet]], **matcher_kw)) | |
if not ret_basin: | |
notyet &= (old_xy2 != xy2) # remove points that have converged | |
_, xy1[notyet] = to_numpy(tree1.query(pts2[xy2[notyet]], **matcher_kw)) | |
if ret_basin: | |
basin[old_xy1[notyet]] = xy1[notyet] | |
notyet &= (old_xy1 != xy1) # remove points that have converged | |
# n_notyet.append(notyet.sum()) | |
niter += 1 | |
if niter >= max_iter: | |
break | |
old_xy2[:] = xy2 | |
old_xy1[:] = xy1 | |
# print('notyet_stats:', ' '.join(map(str, (n_notyet+[0]*10)[:max_iter]))) | |
if pixel_tol > 0: | |
# in case we only want to match some specific points | |
# and still have some way of checking reciprocity | |
old_yx1 = np.unravel_index(old_xy1, (H1, W1))[0].base | |
new_yx1 = np.unravel_index(xy1, (H1, W1))[0].base | |
dis = np.linalg.norm(old_yx1 - new_yx1, axis=-1) | |
converged = dis < pixel_tol | |
if not isinstance(subsample_or_initxy1, int): | |
xy1 = old_xy1 # replace new points by old ones | |
else: | |
converged = ~notyet # converged correspondences | |
# keep only unique correspondences, and sort on xy1 | |
xy1, xy2 = merge_corres(xy1[converged], xy2[converged], (H1, W1), (H2, W2), ret_xy=ret_xy) | |
if ret_basin: | |
return xy1, xy2, basin | |
return xy1, xy2 | |
def extract_correspondences_nonsym(A, B, confA, confB, subsample=8, device=None, ptmap_key='pred_desc', pixel_tol=0): | |
if '3d' in ptmap_key: | |
opt = dict(device='cpu', workers=32) | |
else: | |
opt = dict(device=device, dist='dot', block_size=2**13) | |
# matching the two pairs | |
idx1 = [] | |
idx2 = [] | |
# merge corres from opposite pairs | |
HA, WA = A.shape[:2] | |
HB, WB = B.shape[:2] | |
if pixel_tol == 0: | |
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=subsample, ret_xy=False, **opt) | |
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=subsample, ret_xy=False, **opt) | |
else: | |
S = subsample | |
yA, xA = np.mgrid[S // 2:HA:S, S // 2:WA:S].reshape(2, -1) | |
yB, xB = np.mgrid[S // 2:HB:S, S // 2:WB:S].reshape(2, -1) | |
nn1to2 = fast_reciprocal_NNs(A, B, subsample_or_initxy1=(xA, yA), ret_xy=False, pixel_tol=pixel_tol, **opt) | |
nn2to1 = fast_reciprocal_NNs(B, A, subsample_or_initxy1=(xB, yB), ret_xy=False, pixel_tol=pixel_tol, **opt) | |
idx1 = np.r_[nn1to2[0], nn2to1[1]] | |
idx2 = np.r_[nn1to2[1], nn2to1[0]] | |
c1 = confA.ravel()[idx1] | |
c2 = confB.ravel()[idx2] | |
xy1, xy2, idx = merge_corres(idx1, idx2, (HA, WA), (HB, WB), ret_xy=True, ret_index=True) | |
conf = np.minimum(c1[idx], c2[idx]) | |
corres = (xy1.copy(), xy2.copy(), conf) | |
return todevice(corres, device) | |