Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# MASt3R heads | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange | |
import mast3r.utils.path_to_dust3r # noqa | |
from dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa | |
from dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa | |
import dust3r.utils.path_to_croco # noqa | |
from models.blocks import Mlp # noqa | |
def reg_desc(desc, mode): | |
if 'norm' in mode: | |
desc = desc / desc.norm(dim=-1, keepdim=True) | |
else: | |
raise ValueError(f"Unknown desc mode {mode}") | |
return desc | |
def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None): | |
if desc_conf_mode is None: | |
desc_conf_mode = conf_mode | |
fmap = out.permute(0, 2, 3, 1) # B,H,W,D | |
res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode)) | |
if conf_mode is not None: | |
res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode) | |
if desc_dim is not None: | |
start = 3 + int(conf_mode is not None) | |
res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode) | |
if two_confs: | |
res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode) | |
else: | |
res['desc_conf'] = res['conf'].clone() | |
return res | |
class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT): | |
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP). | |
The input for both heads is a concatenation of Encoder and Decoder outputs | |
""" | |
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None, | |
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs): | |
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, | |
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type) | |
self.local_feat_dim = local_feat_dim | |
patch_size = net.patch_embed.patch_size | |
if isinstance(patch_size, tuple): | |
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance( | |
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints." | |
assert patch_size[0] == patch_size[1], "Error, non square patches not managed" | |
patch_size = patch_size[0] | |
self.patch_size = patch_size | |
self.desc_mode = net.desc_mode | |
self.has_conf = has_conf | |
self.two_confs = net.two_confs # independent confs for 3D regr and descs | |
self.desc_conf_mode = net.desc_conf_mode | |
idim = net.enc_embed_dim + net.dec_embed_dim | |
self.head_local_features = Mlp(in_features=idim, | |
hidden_features=int(hidden_dim_factor * idim), | |
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2) | |
def forward(self, decout, img_shape): | |
# pass through the heads | |
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1])) | |
# recover encoder and decoder outputs | |
enc_output, dec_output = decout[0], decout[-1] | |
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate | |
H, W = img_shape | |
B, S, D = cat_output.shape | |
# extract local_features | |
local_features = self.head_local_features(cat_output) # B,S,D | |
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) | |
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W | |
# post process 3D pts, descriptors and confidences | |
out = torch.cat([pts3d, local_features], dim=1) | |
if self.postprocess: | |
out = self.postprocess(out, | |
depth_mode=self.depth_mode, | |
conf_mode=self.conf_mode, | |
desc_dim=self.local_feat_dim, | |
desc_mode=self.desc_mode, | |
two_confs=self.two_confs, | |
desc_conf_mode=self.desc_conf_mode) | |
return out | |
# @MODIFIED | |
def reg_dense_offsets(xyz, shift=6.0): | |
""" | |
Apply an activation function to the offsets so that they are small at initialization | |
""" | |
d = xyz.norm(dim=-1, keepdim=True) | |
xyz = xyz / d.clip(min=1e-8) | |
offsets = xyz * (torch.exp(d - shift) - torch.exp(torch.zeros_like(d) - shift)) | |
return offsets | |
# @MODIFIED | |
def reg_dense_scales(scales): | |
""" | |
Apply an activation function to the offsets so that they are small at initialization | |
""" | |
scales = scales.exp() | |
return scales | |
# @MODIFIED | |
def reg_dense_rotation(rotations, eps=1e-8): | |
""" | |
Apply PixelSplat's rotation normalization | |
""" | |
return rotations / (rotations.norm(dim=-1, keepdim=True) + eps) | |
# @MODIFIED | |
def reg_dense_sh(sh): | |
""" | |
Apply PixelSplat's spherical harmonic postprocessing | |
""" | |
sh = rearrange(sh, '... (xyz d_sh) -> ... xyz d_sh', xyz=3) | |
return sh | |
# @MODIFIED | |
def reg_dense_opacities(opacities): | |
""" | |
Apply PixelSplat's opacity postprocessing | |
""" | |
return opacities.sigmoid() | |
# @MODIFIED | |
def gaussian_postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None, use_offsets=False, sh_degree=1): | |
if desc_conf_mode is None: | |
desc_conf_mode = conf_mode | |
fmap = out.permute(0, 2, 3, 1) # B,H,W,D | |
assert conf_mode is not None, "Confidence mode must be provided for Gaussian head" | |
assert desc_dim is not None, "Descriptor dimension must be provided for Gaussian head" | |
assert two_confs, "Two confidences must be provided for Gaussian head" | |
pts3d, conf, desc, desc_conf, offset, scales, rotations, sh, opacities = torch.split(fmap, [3, 1, desc_dim, 1, 3, 3, 4, 3 * sh_degree, 1], dim=-1) | |
pts3d = reg_dense_depth(pts3d, mode=depth_mode) | |
conf = reg_dense_conf(conf.squeeze(-1), mode=conf_mode) | |
desc = reg_desc(desc, mode=desc_mode) | |
desc_conf = reg_dense_conf(desc_conf.squeeze(-1), mode=desc_conf_mode) | |
offset = reg_dense_offsets(offset) | |
scales = reg_dense_scales(scales) | |
rotations = reg_dense_rotation(rotations) | |
sh = reg_dense_sh(sh) | |
opacities = reg_dense_opacities(opacities) | |
res = { | |
'pts3d': pts3d, | |
'conf': conf, | |
'desc': desc, | |
'desc_conf': desc_conf, | |
'scales': scales, | |
'rotations': rotations, | |
'sh': sh, | |
'opacities': opacities | |
} | |
if use_offsets: | |
res['means'] = pts3d.detach() + offset | |
else: | |
res['means'] = pts3d.detach() | |
return res | |
# @MODIFIED | |
class GaussianHead(PixelwiseTaskWithDPT): | |
"""Version of the above, modified to also output Gaussian parameters""" | |
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None, | |
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", use_offsets=False, sh_degree=1, **kwargs): | |
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, | |
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type) | |
self.local_feat_dim = local_feat_dim | |
patch_size = net.patch_embed.patch_size | |
if isinstance(patch_size, tuple): | |
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance( | |
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints." | |
assert patch_size[0] == patch_size[1], "Error, non square patches not managed" | |
patch_size = patch_size[0] | |
self.patch_size = patch_size | |
self.desc_mode = net.desc_mode | |
self.has_conf = has_conf | |
self.two_confs = net.two_confs # independent confs for 3D regr and descs | |
self.desc_conf_mode = net.desc_conf_mode | |
idim = net.enc_embed_dim + net.dec_embed_dim | |
self.head_local_features = Mlp(in_features=idim, | |
hidden_features=int(hidden_dim_factor * idim), | |
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2) | |
# Gaussian Num Channels = | |
# 3D mean offsets (3) + | |
# Scales (3) + | |
# Rotations (4) + | |
# Spherical Harmonics (3 * sh_degree) + | |
# Opacity (1) | |
gaussian_num_channels = 3 + 3 + 4 + 3 * sh_degree + 1 | |
self.gaussian_dpt = PixelwiseTaskWithDPT( | |
num_channels=gaussian_num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, | |
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type | |
) | |
final_conv_layer = self.gaussian_dpt.dpt.head[-1] | |
splits_and_inits = [ | |
(3, 0.001, 0.001), # 3D mean offsets | |
(3, 0.00003, -7.0), # Scales | |
(4, 1.0, 0.0), # Rotations | |
(3 * sh_degree, 1.0, 0.0), # Spherical Harmonics | |
(1, 1.0, -2.0) # Opacity | |
] | |
start_channels = 0 | |
for out_channel, s, b in splits_and_inits: | |
torch.nn.init.xavier_uniform_( | |
final_conv_layer.weight[start_channels:start_channels+out_channel, :, :, :], | |
s | |
) | |
torch.nn.init.constant_( | |
final_conv_layer.bias[start_channels:start_channels+out_channel], | |
b | |
) | |
start_channels += out_channel | |
self.use_offsets = use_offsets | |
self.sh_degree = sh_degree | |
def forward(self, decout, img_shape): | |
# pass through the heads | |
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1])) | |
# recover encoder and decoder outputs | |
enc_output, dec_output = decout[0], decout[-1] | |
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate | |
H, W = img_shape | |
B, S, D = cat_output.shape | |
# extract local_features | |
local_features = self.head_local_features(cat_output) # B,S,D | |
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) | |
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W | |
# extract gaussian_features | |
gaussian_features = self.gaussian_dpt.dpt(decout, image_size=(img_shape[0], img_shape[1])) | |
# gaussian_features = self.gaussian_local_features(cat_output) # B,S,D | |
# gaussian_features = gaussian_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) | |
# gaussian_features = F.pixel_shuffle(gaussian_features, self.patch_size) # B,d,H,W | |
# post process 3D pts, descriptors and confidences | |
out = torch.cat([pts3d, local_features, gaussian_features], dim=1) | |
if self.postprocess: | |
out = gaussian_postprocess(out, | |
depth_mode=self.depth_mode, | |
conf_mode=self.conf_mode, | |
desc_dim=self.local_feat_dim, | |
desc_mode=self.desc_mode, | |
two_confs=self.two_confs, | |
desc_conf_mode=self.desc_conf_mode, | |
use_offsets=self.use_offsets, | |
sh_degree=self.sh_degree) | |
return out | |
def mast3r_head_factory(head_type, output_mode, net, has_conf=False, use_offsets=False, sh_degree=1): | |
"""" build a prediction head for the decoder | |
""" | |
if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'): | |
local_feat_dim = int(output_mode[10:]) | |
assert net.dec_depth > 9 | |
l2 = net.dec_depth | |
feature_dim = 256 | |
last_dim = feature_dim // 2 | |
out_nchan = 3 | |
ed = net.enc_embed_dim | |
dd = net.dec_embed_dim | |
return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf, | |
num_channels=out_nchan + has_conf, | |
feature_dim=feature_dim, | |
last_dim=last_dim, | |
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2], | |
dim_tokens=[ed, dd, dd, dd], | |
postprocess=postprocess, | |
depth_mode=net.depth_mode, | |
conf_mode=net.conf_mode, | |
head_type='regression') | |
# @MODIFIED | |
elif head_type == 'gaussian_head' and output_mode.startswith('pts3d+gaussian+desc'): | |
local_feat_dim = int(output_mode[19:]) | |
assert net.dec_depth > 9 | |
l2 = net.dec_depth | |
feature_dim = 256 | |
last_dim = feature_dim // 2 | |
out_nchan = 3 | |
ed = net.enc_embed_dim | |
dd = net.dec_embed_dim | |
return GaussianHead(net, local_feat_dim=local_feat_dim, has_conf=has_conf, | |
num_channels=out_nchan + has_conf, | |
feature_dim=feature_dim, | |
last_dim=last_dim, | |
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2], | |
dim_tokens=[ed, dd, dd, dd], | |
postprocess=postprocess, | |
depth_mode=net.depth_mode, | |
conf_mode=net.conf_mode, | |
head_type='regression', | |
use_offsets=use_offsets, | |
sh_degree=sh_degree) | |
else: | |
raise NotImplementedError( | |
f"unexpected {head_type=} and {output_mode=}") | |