Spaces:
Sleeping
Sleeping
bradartigue
commited on
Commit
β’
cb4c6c0
1
Parent(s):
e6a8daa
Update app.py
Browse files
app.py
CHANGED
@@ -1,205 +1,137 @@
|
|
1 |
-
import os
|
2 |
-
import
|
3 |
-
import requests
|
4 |
-
from flask import Flask, request, jsonify
|
5 |
from flask_cors import CORS
|
6 |
-
|
7 |
-
import
|
8 |
-
import langchain
|
9 |
-
import random
|
10 |
-
from langchain_openai import ChatOpenAI
|
11 |
-
from langchain_community.cache import InMemoryCache
|
12 |
-
from langchain.prompts import PromptTemplate
|
13 |
-
from langchain.chains import LLMChain
|
14 |
|
15 |
# Set environment variables and OpenAI configurations
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
app = Flask(__name__)
|
22 |
CORS(app)
|
23 |
|
24 |
-
#
|
25 |
-
def process_emotions(query):
|
26 |
-
try:
|
27 |
|
28 |
-
|
29 |
-
url = "https://api-ft-inline-tags.caipinnovation.com/query"
|
30 |
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
response = requests.post(url, json=payload)
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
ft_answer = response.json().get("answer")
|
42 |
-
return ft_answer
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
#
|
48 |
-
def process_query(query, chat_history, systemMessage, emotions):
|
49 |
-
try:
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
ft_model_name = os.environ.get("OPENAI_MODEL_NAME")
|
55 |
-
|
56 |
-
#Model name from env will be used here:
|
57 |
-
fine_tuned_model = ChatOpenAI(
|
58 |
-
temperature=0, model_name=ft_model_name
|
59 |
-
)
|
60 |
-
|
61 |
-
prompt_template = """System: {systemMessage}.
|
62 |
-
User: The user is inquiring about cataracts or cataract surgery. Answer their question: {query}"""
|
63 |
-
PROMPT = PromptTemplate(template=prompt_template,
|
64 |
-
input_variables=["systemMessage", "query"])
|
65 |
-
|
66 |
-
chain = LLMChain(llm=fine_tuned_model, prompt=PROMPT, verbose=False)
|
67 |
-
|
68 |
-
input_prompt = [{"systemMessage": systemMessage, "query": query}]
|
69 |
-
|
70 |
-
generatedResponse = chain.apply(input_prompt)
|
71 |
-
|
72 |
-
#Replace/filter out any prepended strings from LLM response
|
73 |
-
#Sometimes we have issues that the LLM writes these following strings before answer. Use if needed.
|
74 |
-
llm_response = generatedResponse[0]["text"].replace("Answer:", "").replace("System:", "").lstrip()
|
75 |
-
print(llm_response)
|
76 |
-
|
77 |
-
#NOW SEND RESPONSE TO GET TAGGED w/ Emotions and Expressions
|
78 |
-
if emotions:
|
79 |
-
try:
|
80 |
-
llm_response_ft = process_emotions(llm_response)
|
81 |
-
except Exception as e:
|
82 |
-
# Log the error
|
83 |
-
print(f"Error processing emotions for query: {llm_response}. Error: {str(e)}")
|
84 |
-
# Return the error response
|
85 |
-
return {"error": "Error processing emotions", "query": llm_response}
|
86 |
-
|
87 |
-
return {
|
88 |
-
"answer": llm_response_ft,
|
89 |
-
"source_documents": ""
|
90 |
-
}
|
91 |
-
else:
|
92 |
-
return {
|
93 |
-
"answer": llm_response,
|
94 |
-
"source_documents": ""
|
95 |
-
}
|
96 |
-
except Exception as e:
|
97 |
-
print(f"Error processing query: {query}. Error: {str(e)}")
|
98 |
-
return {"error": "Error processing query"}
|
99 |
-
|
100 |
-
#This handles the chart functionality in HIMSS
|
101 |
-
def process_chart(query, s1 ,s2):
|
102 |
-
try:
|
103 |
-
print("calling fine_tuned_model")
|
104 |
-
#Get name of model from ENV
|
105 |
-
ft_model_name = os.environ.get("OPENAI_MODEL_NAME")
|
106 |
-
|
107 |
-
#Model name from env will be used here:
|
108 |
-
fine_tuned_model = ChatOpenAI(
|
109 |
-
temperature=0, model_name=ft_model_name
|
110 |
-
)
|
111 |
|
112 |
-
|
113 |
-
User: {query}"""
|
114 |
-
PROMPT = PromptTemplate(template=prompt_template,
|
115 |
-
input_variables=["systemMessage", "query"])
|
116 |
|
117 |
-
|
|
|
118 |
|
119 |
-
|
120 |
-
systemMessage = os.environ.get("SYSTEM_MESSAGE")
|
121 |
|
122 |
-
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
generatedResponse_filtered = generatedResponse[0]["text"].replace("Answer:", "").replace("System:", "").lstrip()
|
130 |
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
#POST request to this service
|
142 |
@app.route('/query', methods=['POST'])
|
143 |
def handle_query():
|
144 |
-
|
|
|
145 |
data = request.json
|
146 |
query=data['prompt']
|
147 |
-
|
148 |
-
|
|
|
149 |
answer = ''
|
150 |
-
emotions = ''
|
151 |
|
152 |
-
|
153 |
-
answer = result['answer']
|
154 |
|
155 |
-
|
156 |
-
"
|
157 |
-
|
158 |
-
|
159 |
-
}
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
return jsonify(serialized_result), 200
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
# Randomly select two strings from the list
|
168 |
-
random_strings = random.sample(issues, 2)
|
169 |
-
return random_strings
|
170 |
-
|
171 |
-
def generate_description():
|
172 |
-
issues = ["Anterior Uveitis", "Corneal Guttata", "Diabetes", "Diabetes Mellitus", "Glaucoma", "Retinal Detachment", "Corticosteroids", "Phenothiazine", "Chlorpromazine", "Ultraviolet Radiation Exposure", "Smoking", "High Alcohol Consumption", "Poor Nutrition"]
|
173 |
-
random_strings = pick_random_issues(issues)
|
174 |
-
random_string_1, random_string_2 = random_strings
|
175 |
-
description = f"Describe any issues I may encounter due to {random_string_1} and {random_string_2} relative to my upcoming cataract surgery?"
|
176 |
-
return description, random_string_1, random_string_2
|
177 |
-
|
178 |
-
#GET request to chart feature
|
179 |
-
@app.route('/chart', methods=['GET'])
|
180 |
-
def handle_chart():
|
181 |
-
description, random_string_1, random_string_2 = generate_description()
|
182 |
-
query = description
|
183 |
-
if not query:
|
184 |
-
return jsonify({"error": "No query provided"}), 400
|
185 |
-
result = process_chart(query, random_string_1, random_string_2)
|
186 |
-
if "error" in result:
|
187 |
-
return jsonify(result), 500
|
188 |
|
189 |
serialized_result = {
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
|
|
193 |
}
|
194 |
-
|
195 |
return jsonify(serialized_result), 200
|
196 |
|
197 |
-
|
198 |
@app.route('/')
|
199 |
def hello():
|
200 |
version = os.environ.get("CODE_VERSION")
|
201 |
return jsonify({"status": "Healthy", "version": version}), 200
|
202 |
|
203 |
-
|
204 |
if __name__ == "__main__":
|
205 |
-
app.run(host="0.0.0.0", port=
|
|
|
1 |
+
import os, re
|
2 |
+
from flask import Flask, request, jsonify, make_response
|
|
|
|
|
3 |
from flask_cors import CORS
|
4 |
+
from time import sleep
|
5 |
+
from openai import OpenAI
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Set environment variables and OpenAI configurations
|
8 |
+
print("OpenAI:\t\t"+os.environ['OPENAI_API_KEY'])
|
9 |
+
# Connect to the assistant
|
10 |
+
|
11 |
+
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
|
12 |
+
openai_assistant = openai_client.beta.assistants.retrieve(assistant_id=os.environ['OPENAI_ASSISTANT_ID'])
|
13 |
+
openai_assistant_id=openai_assistant.id
|
14 |
+
openai_thread_id = ""
|
15 |
+
openai_additional_instruction = os.environ['OPENAI_ADDITIONAL_INSTRUCTION']
|
16 |
+
max_response_length = os.environ['MAX_RESPONSE_LENGTH']
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
CORS(app)
|
20 |
|
21 |
+
# Function to create a thread
|
|
|
|
|
22 |
|
23 |
+
def create_thread():
|
|
|
24 |
|
25 |
+
openai_thread = openai_client.beta.threads.create()
|
26 |
+
return(openai_thread.id)
|
27 |
|
28 |
+
# Function to create a message in a given thread
|
|
|
29 |
|
30 |
+
def create_message(thread_id,user_message):
|
31 |
+
thread_message = openai_client.beta.threads.messages.create(
|
32 |
+
thread_id,
|
33 |
+
role='user',
|
34 |
+
content=user_message,
|
35 |
+
)
|
36 |
+
return thread_message
|
37 |
|
38 |
+
# Function to retrieve a message from a given thread
|
|
|
|
|
39 |
|
40 |
+
def retrieve_message(thread_id,message_id):
|
41 |
+
message = openai_client.beta.threads.messages.retrieve(
|
42 |
+
message_id=message_id,
|
43 |
+
thread_id=thread_id,
|
44 |
+
)
|
45 |
+
return message
|
46 |
|
47 |
+
# Function to run the thread
|
|
|
|
|
48 |
|
49 |
+
def run_thread(thread_id,assistant_id):
|
50 |
+
run = openai_client.beta.threads.runs.create_and_poll(
|
51 |
+
thread_id=thread_id,
|
52 |
+
additional_instructions=openai_additional_instruction,
|
53 |
+
assistant_id=assistant_id,
|
54 |
+
)
|
55 |
|
56 |
+
return run
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Function to check the status of the run
|
|
|
|
|
|
|
59 |
|
60 |
+
def run_status(run):
|
61 |
+
return run.status
|
62 |
|
63 |
+
# Function to clear a thread
|
|
|
64 |
|
65 |
+
def delete_thread(thread_id):
|
66 |
+
return openai_client.beta.threads.delete(thread_id)
|
67 |
|
68 |
+
def delete_message(message_id,thread_id):
|
69 |
+
deleted_message = openai_client.beta.threads.messages.delete(
|
70 |
+
message_id=message_id,
|
71 |
+
thread_id=thread_id,
|
72 |
+
)
|
73 |
+
return deleted_message.id
|
74 |
|
75 |
+
#This handles general Q&A to the LLM
|
76 |
+
def process_query(query,thread_id):
|
|
|
77 |
|
78 |
+
retval = {"answer":""}
|
79 |
+
|
80 |
+
new_message = create_message(thread_id,query)
|
81 |
+
run =run_thread(thread_id,openai_assistant_id)
|
82 |
|
83 |
+
messages = openai_client.beta.threads.messages.list(thread_id=thread_id)
|
84 |
+
for message in messages:
|
85 |
+
|
86 |
+
if message.run_id == run.id:
|
87 |
+
if message.role=='assistant':
|
88 |
+
# gets the answer from the assistant
|
89 |
+
answer = str(message.content[0].text.value)
|
90 |
+
# kills the source reference in the response, if there
|
91 |
+
regex_pattern = r"γ.*?γ"
|
92 |
+
scrubbed_answer = re.sub(regex_pattern, '', answer)
|
93 |
+
scrubbed_answer = scrubbed_answer.replace('Mater','Matter')
|
94 |
+
retval = {"answer":scrubbed_answer}
|
95 |
+
|
96 |
+
return retval
|
97 |
|
98 |
#POST request to this service
|
99 |
@app.route('/query', methods=['POST'])
|
100 |
def handle_query():
|
101 |
+
print(request)
|
102 |
+
print(request.json)
|
103 |
data = request.json
|
104 |
query=data['prompt']
|
105 |
+
openai_thread_id=data['thread']
|
106 |
+
print("Assistant:\t\t "+openai_assistant.id)
|
107 |
+
print("Thread:\t\t"+openai_thread_id)
|
108 |
answer = ''
|
|
|
109 |
|
110 |
+
# need to grab a thread id or create a new thread
|
|
|
111 |
|
112 |
+
if openai_thread_id == "":
|
113 |
+
print("Creating a new thread ")
|
114 |
+
# create the thread
|
115 |
+
openai_thread_id=create_thread()
|
|
|
116 |
|
117 |
+
print("New thread:\t"+openai_thread_id)
|
|
|
|
|
118 |
|
119 |
+
result = process_query(query,openai_thread_id)
|
120 |
+
answer = result['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
serialized_result = {
|
123 |
+
"answer": answer,
|
124 |
+
"matchedContext": "",
|
125 |
+
"conversationPayload": "",
|
126 |
+
"thread": openai_thread_id
|
127 |
}
|
128 |
+
print(serialized_result['answer'])
|
129 |
return jsonify(serialized_result), 200
|
130 |
|
|
|
131 |
@app.route('/')
|
132 |
def hello():
|
133 |
version = os.environ.get("CODE_VERSION")
|
134 |
return jsonify({"status": "Healthy", "version": version}), 200
|
135 |
|
|
|
136 |
if __name__ == "__main__":
|
137 |
+
app.run(host="0.0.0.0", port=15002)
|