Spaces:
Sleeping
Sleeping
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances.""" | |
import concurrent.futures | |
import math | |
import statistics | |
from typing import List, Optional, Union | |
import datasets | |
import evaluate | |
import numpy as np | |
# TODO: Add BibTeX citation | |
_CITATION = """TBA""" | |
_DESCRIPTION = """\ | |
Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances. The metric outputs a score greater or equal to 0, where 0 indicates a perfect generation. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`. | |
references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`. | |
batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None. | |
cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3. | |
cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$. | |
metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse". | |
num_processes: int, optional: The number of processes to use for computing the distance. Default is 1. | |
instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False. | |
return_distance: bool, optional: Whether to return the distance matrix. Default is False. | |
return_matching: bool, optional: Whether to return the matching matrix. Default is False. | |
return_each_features: bool, optional: Whether to return the results for each feature. Default is False. | |
return_coverages: bool, optional: Whether to return the coverages. Default is False. | |
return_all: bool, optional: Whether to return all the results. Default is False. | |
dtype: str, optional: The data type used for computation. Default is "float32". | |
eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8. | |
Returns: | |
dict: A dictionary containing the following keys: | |
precision_distance (float): The precision of the distance. | |
recall_distance (float): The recall of the distance. | |
mean_distance (float): The mean of the distance. | |
index_distance (float): The index of the distance. | |
matching_precision (float): The precision of the matching instances. | |
matching_recall (float): The recall of the matching instances. | |
matching_f1 (float): The F1-score of the matching instances. | |
coverages (list of float): The coverages. | |
cuc (float): The coverage under the curve. | |
macro_.* (float): The macro value of the .*. | |
.*_features (list of float): The values computed individually for each feature. | |
distance (numpy.ndarray): The distance matrix. | |
match (numpy.ndarray): The matching matrix. | |
match_inv (numpy.ndarray): The inverse matching matrix. | |
Examples: | |
Examples should be written in doctest format, and should illustrate how | |
to use the function. | |
>>> num_generation = 100 | |
>>> num_reference = 10 | |
>>> seq_len = 100 | |
>>> num_features = 10 | |
>>> references = np.random.rand(num_reference, seq_len, num_features) | |
>>> predictions = np.random.rand(num_generation, seq_len, num_features) | |
>>> metric = evaluate.load("bowdbeg/matching_series") | |
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000, return_all=True) | |
>>> print(results) | |
{'precision_distance': 0.1573285013437271, 'recall_distance': 0.15106813609600067, 'mean_distance': 0.1541983187198639, 'index_distance': 0.16858606040477753, 'matching_precision': 0.06, 'matching_recall': 1.0, 'matching_f1': 0.11320756503381972, 'cuc': 0.12428571428571429, 'macro_precision_distance': 0.13803552389144896, 'macro_recall_distance': 0.12179495096206665, 'macro_mean_distance': 0.1299152374267578, 'macro_index_distance': 0.16858604848384856, 'macro_matching_precision': 0.094, 'macro_matching_recall': 0.97, 'macro_matching_f1': 0.17132608782381706, 'macro_cuc': 0.11419285714285714, 'distance': array([[[0.20763363, 0.16514072, 0.18695284, ..., 0.15037987, | |
0.19424284, 0.15943716], | |
[0.17150438, 0.18020014, 0.17024504, ..., 0.18492931, | |
0.18814348, 0.204207 ], | |
[0.1769202 , 0.15609328, 0.17568389, ..., 0.17731658, | |
0.2027854 , 0.13216409], | |
..., | |
[0.1838122 , 0.19475608, 0.14176111, ..., 0.1635111 , | |
0.1652672 , 0.17145865], | |
[0.16084194, 0.14208058, 0.17567575, ..., 0.15595785, | |
0.16614595, 0.17834347], | |
[0.16388315, 0.14126392, 0.18021484, ..., 0.16791071, | |
0.18403953, 0.16666758]], | |
[[0.16838932, 0.18878576, 0.17654441, ..., 0.1747057 , | |
0.16590554, 0.16901629], | |
[0.16553226, 0.1882645 , 0.17863466, ..., 0.19269662, | |
0.20451452, 0.19941731], | |
[0.16502398, 0.16619626, 0.18069996, ..., 0.16124909, | |
0.18933088, 0.1495165 ], | |
..., | |
[0.15946846, 0.19988221, 0.17965002, ..., 0.12951666, | |
0.2067793 , 0.13811146], | |
[0.16227122, 0.17736743, 0.18641905, ..., 0.15038314, | |
0.20186146, 0.17849396], | |
[0.16410898, 0.18323919, 0.16945514, ..., 0.15783694, | |
0.21556957, 0.17172968]], | |
[[0.18094379, 0.1364854 , 0.18436092, ..., 0.187335 , | |
0.16240291, 0.13713893], | |
[0.18005298, 0.15323727, 0.15788248, ..., 0.19451861, | |
0.12822135, 0.14064161], | |
[0.1564556 , 0.17312287, 0.1856657 , ..., 0.17237219, | |
0.1596888 , 0.16547912], | |
..., | |
[0.15611127, 0.16121496, 0.15533476, ..., 0.16520709, | |
0.1427248 , 0.19455005], | |
[0.17268528, 0.17360437, 0.15962966, ..., 0.18134868, | |
0.15509704, 0.20222983], | |
[0.18704675, 0.15934442, 0.14928888, ..., 0.18904984, | |
0.16192877, 0.18576236]], | |
..., | |
[[0.13717972, 0.15645625, 0.16123378, ..., 0.19453087, | |
0.14441733, 0.1487963 ], | |
[0.1454296 , 0.13368016, 0.18665504, ..., 0.16096605, | |
0.15130125, 0.18332979], | |
[0.14654924, 0.19097947, 0.19629759, ..., 0.15887487, | |
0.19266474, 0.17430782], | |
..., | |
[0.161704 , 0.16357127, 0.18512094, ..., 0.16441964, | |
0.13961458, 0.17298506], | |
[0.1366249 , 0.15852758, 0.1982772 , ..., 0.18822236, | |
0.16153064, 0.19617072], | |
[0.14570995, 0.15005183, 0.19667573, ..., 0.1856473 , | |
0.18603194, 0.19179863]], | |
[[0.17813908, 0.176182 , 0.16847256, ..., 0.16903524, | |
0.17150073, 0.15068175], | |
[0.17632519, 0.1404587 , 0.16388708, ..., 0.16873878, | |
0.15744762, 0.198475 ], | |
[0.14986345, 0.1517829 , 0.17624639, ..., 0.18365957, | |
0.17399347, 0.15581599], | |
..., | |
[0.16128553, 0.1974935 , 0.13766351, ..., 0.14026196, | |
0.15450196, 0.16110381], | |
[0.16281141, 0.14699166, 0.16935429, ..., 0.1394466 , | |
0.1717883 , 0.16191883], | |
[0.14886455, 0.1603608 , 0.15172943, ..., 0.12851712, | |
0.19859877, 0.15576601]], | |
[[0.20230632, 0.19680001, 0.17143433, ..., 0.18601838, | |
0.15998998, 0.16043548], | |
[0.19753966, 0.19073424, 0.15046756, ..., 0.18833323, | |
0.16755773, 0.20127842], | |
[0.16012056, 0.16638812, 0.16493171, ..., 0.15849902, | |
0.20269662, 0.1857642 ], | |
..., | |
[0.16341361, 0.19168772, 0.16597596, ..., 0.15715535, | |
0.18122095, 0.17266828], | |
[0.1570099 , 0.18294124, 0.16713732, ..., 0.17442709, | |
0.17020254, 0.18804537], | |
[0.16752282, 0.1295177 , 0.18792175, ..., 0.13976808, | |
0.21054329, 0.18118018]]], dtype=float32), 'match': array([4, 7, 3, 9, 4, 0, 7, 5, 4, 7, 9, 7, 7, 5, 7, 0, 0, 7, 4, 3, 3, 2, | |
8, 9, 4, 4, 5, 1, 4, 9, 0, 2, 7, 3, 6, 5, 6, 3, 2, 2, 2, 6, 9, 4, | |
4, 9, 1, 6, 0, 6, 9, 2, 0, 6, 7, 2, 0, 4, 5, 2, 3, 9, 2, 3, 9, 1, | |
6, 4, 8, 9, 7, 4, 6, 5, 5, 6, 9, 5, 6, 2, 9, 4, 9, 3, 2, 9, 9, 7, | |
9, 5, 9, 1, 7, 6, 4, 4, 5, 4, 7, 5]), 'match_inv': array([15, 91, 79, 4, 4, 4, 49, 4, 49, 45]), 'coverages': [0.10000000000000002, 0.16666666666666666, 0.3666666666666667, 0.6333333333333333, 0.8333333333333334, 0.9, 1.0], 'precision_distance_features': [0.1383965164422989, 0.13804036378860474, 0.1388234943151474, 0.1392393559217453, 0.1357768476009369, 0.1364508718252182, 0.14039862155914307, 0.13417008519172668, 0.1368638128042221, 0.14219526946544647], 'recall_distance_features': [0.11730053275823593, 0.12232911586761475, 0.12200610339641571, 0.12571024894714355, 0.12081331014633179, 0.11693283170461655, 0.12660981714725494, 0.12248671054840088, 0.11726576089859009, 0.12649507820606232], 'mean_distance_features': [0.1278485246002674, 0.13018473982810974, 0.13041479885578156, 0.13247480243444443, 0.12829507887363434, 0.12669185176491737, 0.133504219353199, 0.12832839787006378, 0.1270647868514061, 0.1343451738357544], 'index_distance_features': [0.17064405977725983, 0.17019756138324738, 0.17373089492321014, 0.17575454711914062, 0.15942324697971344, 0.1615942418575287, 0.16519878804683685, 0.1714271903038025, 0.17072594165802002, 0.16716401278972626], 'matching_precision_features': [0.1, 0.09, 0.1, 0.1, 0.09, 0.09, 0.1, 0.08, 0.09, 0.1], 'matching_recall_features': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 0.9, 1.0], 'matching_f1_features': [0.18181819851239656, 0.16513763164885095, 0.18181819851239656, 0.18181819851239656, 0.16513763164885095, 0.16513763164885095, 0.18000001639999985, 0.14693879251145342, 0.16363638033057834, 0.18181819851239656], 'cuc_features': [0.11935714285714286, 0.11578571428571431, 0.11814285714285715, 0.12407142857142857, 0.11207142857142856, 0.11821428571428572, 0.10807142857142855, 0.09635714285714285, 0.10700000000000001, 0.12285714285714286], 'coverages_features': [[0.10000000000000002, 0.20000000000000004, 0.26666666666666666, 0.4666666666666666, 0.7666666666666666, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3666666666666667, 0.5666666666666668, 0.6, 0.8333333333333334, 1.0], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.6999999999999998, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.6, 0.7333333333333333, 0.9333333333333332, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5, 0.6666666666666666, 0.7666666666666666, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3333333333333333, 0.5333333333333333, 0.7666666666666666, 0.8333333333333334, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5333333333333333, 0.6999999999999998, 0.7666666666666666, 0.9], [0.10000000000000002, 0.20000000000000004, 0.2333333333333333, 0.4666666666666666, 0.5333333333333333, 0.6333333333333333, 0.9], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.5666666666666667, 0.8000000000000002, 0.9], [0.10000000000000002, 0.16666666666666666, 0.30000000000000004, 0.5666666666666667, 0.7999999999999999, 0.9, 1.0]]} | |
""" | |
class matching_series(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))), | |
} | |
), | |
# Homepage of the module for documentation | |
homepage="https://huggingface.co/spaces/bowdbeg/matching_series", | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
pass | |
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: | |
"""""" | |
all_kwargs = {"predictions": predictions, "references": references, **kwargs} | |
if predictions is None and references is None: | |
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} | |
all_kwargs.update(missing_kwargs) | |
else: | |
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] | |
if missing_inputs: | |
raise ValueError( | |
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" | |
) | |
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} | |
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} | |
return self._compute(**inputs, **compute_kwargs) | |
def _compute( | |
self, | |
predictions: Union[List, np.ndarray], | |
references: Union[List, np.ndarray], | |
batch_size: Optional[int] = None, | |
cuc_n_calculation: int = 3, | |
cuc_n_samples: Union[List[int], str] = "auto", | |
metric: str = "mse", | |
num_processes: int = 1, | |
instance_normalization: bool = False, | |
return_distance: bool = False, | |
return_matching: bool = False, | |
return_each_features: bool = False, | |
return_coverages: bool = False, | |
return_all: bool = False, | |
dtype=np.float32, | |
eps: float = 1e-8, | |
): | |
""" | |
Compute the Matching Series metric | |
Args: | |
predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`. | |
references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`. | |
batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None. | |
cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3. | |
cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$. | |
metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse". | |
num_processes: int, optional: The number of processes to use for computing the distance. Default is 1. | |
instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False. | |
return_distance: bool, optional: Whether to return the distance matrix. Default is False. | |
return_matching: bool, optional: Whether to return the matching matrix. Default is False. | |
return_each_features: bool, optional: Whether to return the results for each feature. Default is False. | |
return_coverages: bool, optional: Whether to return the coverages. Default is False. | |
return_all: bool, optional: Whether to return all the results. Default is False. | |
dtype: str, optional: The data type used for computation. Default is "float32". | |
eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8. | |
Returns: | |
dict: A dictionary containing the following keys: | |
precision_distance (float): The precision of the distance. | |
recall_distance (float): The recall of the distance. | |
mean_distance (float): The mean of the distance. | |
index_distance (float): The index of the distance. | |
matching_precision (float): The precision of the matching instances. | |
matching_recall (float): The recall of the matching instances. | |
matching_f1 (float): The F1-score of the matching instances. | |
coverages (list of float): The coverages. | |
cuc (float): The coverage under the curve. | |
macro_.* (float): The macro value of the .*. | |
.*_features (list of float): The values computed individually for each feature. | |
distance (numpy.ndarray): The distance matrix. | |
match (numpy.ndarray): The matching matrix. | |
match_inv (numpy.ndarray): The inverse matching matrix. | |
""" | |
if return_all: | |
return_distance = True | |
return_matching = True | |
return_each_features = True | |
return_coverages = True | |
predictions = np.array(predictions).astype(dtype) | |
references = np.array(references).astype(dtype) | |
if instance_normalization: | |
predictions = (predictions - predictions.mean(axis=1, keepdims=True)) / predictions.std( | |
axis=1, keepdims=True | |
) | |
references = (references - references.mean(axis=1, keepdims=True)) / references.std(axis=1, keepdims=True) | |
assert isinstance(predictions, np.ndarray) and isinstance(references, np.ndarray) | |
if predictions.shape[1:] != references.shape[1:]: | |
raise ValueError( | |
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format( | |
predictions.shape[1:], references.shape[1:] | |
) | |
) | |
# at first, convert the inputs to numpy arrays | |
distance = self.compute_distance( | |
predictions=predictions, | |
references=references, | |
metric=metric, | |
batch_size=batch_size, | |
num_processes=num_processes, | |
dtype=dtype, | |
) | |
metrics = self._compute_metrics( | |
distance=distance.mean(axis=-1), | |
eps=eps, | |
cuc_n_calculation=cuc_n_calculation, | |
cuc_n_samples=cuc_n_samples, | |
) | |
metrics_feature = [ | |
self._compute_metrics(distance[:, :, f], eps, cuc_n_calculation, cuc_n_samples) | |
for f in range(predictions.shape[-1]) | |
] | |
macro_metrics = { | |
"macro_" + k: statistics.mean([m[k] for m in metrics_feature]) # type: ignore | |
for k in metrics_feature[0].keys() | |
if isinstance(metrics_feature[0][k], (int, float)) | |
} | |
out = {} | |
out.update({k: v for k, v in metrics.items() if isinstance(v, (int, float))}) | |
out.update(macro_metrics) | |
if return_distance: | |
out["distance"] = distance | |
if return_matching: | |
out.update({k: v for k, v in metrics.items() if "match" in k}) | |
if return_coverages: | |
out["coverages"] = metrics["coverages"] | |
if return_each_features: | |
out.update( | |
{ | |
k + "_features": [m[k] for m in metrics_feature] | |
for k in metrics_feature[0].keys() | |
if isinstance(metrics_feature[0][k], (int, float)) | |
} | |
) | |
if return_coverages: | |
out.update( | |
{ | |
"coverages_features": [m["coverages"] for m in metrics_feature], | |
} | |
) | |
return out | |
def compute_cuc( | |
self, | |
match: np.ndarray, | |
n_reference: int, | |
n_calculation: int, | |
n_samples: Union[List[int], str], | |
): | |
""" | |
Compute Coverage Under Curve | |
Args: | |
match: best match for each generated time series | |
n_reference: number of reference time series | |
n_calculation: number of Coverage Under Curve calculate times | |
n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions. | |
Returns: | |
""" | |
n_generaiton = len(match) | |
if n_samples == "auto": | |
exp = int(math.log2(n_generaiton)) | |
n_samples = [int(2**i) for i in range(exp)] | |
n_samples.append(n_generaiton) | |
assert isinstance(n_samples, list) and all(isinstance(n, int) for n in n_samples) | |
coverages = [] | |
for n_sample in n_samples: | |
coverage = 0 | |
for _ in range(n_calculation): | |
sample = np.random.choice(match, size=n_sample, replace=False) # type: ignore | |
coverage += len(np.unique(sample)) / n_reference | |
coverages.append(coverage / n_calculation) | |
cuc = (np.trapz(coverages, n_samples) / len(n_samples) / max(n_samples)).item() | |
return coverages, cuc | |
def _compute_distance(x, y, metric: str = "mse", axis: int = -1): | |
if metric.lower() == "mse": | |
return np.mean((x - y) ** 2, axis=axis) | |
elif metric.lower() == "mae": | |
return np.mean(np.abs(x - y), axis=axis) | |
elif metric.lower() == "rmse": | |
return np.sqrt(np.mean((x - y) ** 2, axis=axis)) | |
else: | |
raise ValueError("Unknown metric: {}".format(metric)) | |
def compute_distance( | |
self, | |
predictions: np.ndarray, | |
references: np.ndarray, | |
metric: str, | |
batch_size: Optional[int] = None, | |
num_processes: int = 1, | |
dtype=np.float32, | |
): | |
# distance between predictions and references for all example combinations for each features | |
# shape: (num_generation, num_reference, num_features) | |
if batch_size is not None: | |
if num_processes > 1: | |
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype) | |
idxs = [ | |
(i, j) | |
for i in range(0, len(predictions) + batch_size, batch_size) | |
for j in range(0, len(references) + batch_size, batch_size) | |
] | |
args = [ | |
(predictions[i : i + batch_size, None], references[None, j : j + batch_size], metric, -2) | |
for i, j in idxs | |
] | |
with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor: | |
results = executor.map( | |
self._compute_distance, | |
*zip(*args), | |
) | |
for (i, j), d in zip(idxs, results): | |
distance[i : i + batch_size, j : j + batch_size] = d | |
else: | |
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype) | |
# iterate over the predictions and references in batches | |
for i in range(0, len(predictions) + batch_size, batch_size): | |
for j in range(0, len(references) + batch_size, batch_size): | |
d = self._compute_distance( | |
predictions[i : i + batch_size, None], | |
references[None, j : j + batch_size], | |
metric=metric, | |
axis=-2, | |
) | |
distance[i : i + batch_size, j : j + batch_size] = d | |
else: | |
distance = self._compute_distance(predictions[:, None], references[None, :], metric=metric, axis=-2) | |
return distance | |
def _compute_metrics( | |
self, | |
distance: np.ndarray, | |
eps: float = 1e-8, | |
cuc_n_calculation: int = 3, | |
cuc_n_samples: Union[List[int], str] = "auto", | |
) -> dict[str, float | list[float]]: | |
""" | |
Compute metrics from the distance matrix | |
Args: | |
distance: distance matrix. shape: (num_generation, num_reference) | |
Returns: | |
""" | |
index_distance = distance.diagonal(axis1=0, axis2=1).mean().item() | |
# matching scores | |
# best match for each generated time series | |
# shape: (num_generation,) | |
best_match = np.argmin(distance, axis=-1) | |
precision_distance = distance[np.arange(len(best_match)), best_match].mean().item() | |
# best match for each reference time series | |
# shape: (num_reference,) | |
best_match_inv = np.argmin(distance, axis=0) | |
recall_distance = distance[best_match_inv, np.arange(len(best_match_inv))].mean().item() | |
mean_distance = (precision_distance + recall_distance) / 2 | |
# matching precision, recall and f1 | |
matching_precision = np.unique(best_match_inv).size / len(best_match) | |
matching_recall = np.unique(best_match).size / len(best_match_inv) | |
matching_f1 = 2 / (1 / (matching_precision + eps) + 1 / (matching_recall + eps)) | |
# cuc | |
coverages, cuc = self.compute_cuc(best_match, len(best_match_inv), cuc_n_calculation, cuc_n_samples) | |
return { | |
"precision_distance": precision_distance, | |
"recall_distance": recall_distance, | |
"mean_distance": mean_distance, | |
"index_distance": index_distance, | |
"matching_precision": matching_precision, | |
"matching_recall": matching_recall, | |
"matching_f1": matching_f1, | |
"cuc": cuc, | |
"coverages": coverages, | |
"match": best_match, | |
"match_inv": best_match_inv, | |
} | |