Spaces:
Sleeping
Sleeping
File size: 1,315 Bytes
8f3e4ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import json
import logging
from argparse import ArgumentParser
import evaluate
import numpy as np
logger = logging.getLogger(__name__)
parser = ArgumentParser(
description="Compute the matching series score between two time series freezed in a numpy array"
)
parser.add_argument("predictions", type=str, help="Path to the numpy array containing the predictions")
parser.add_argument("references", type=str, help="Path to the numpy array containing the references")
parser.add_argument("--output", type=str, help="Path to the output file")
parser.add_argument("--batch_size", type=int, help="Batch size to use for the computation")
args = parser.parse_args()
if not args.predictions or not args.references:
raise ValueError("You must provide the path to the predictions and references numpy arrays")
predictions = np.load(args.predictions)
references = np.load(args.references)
logger.info(f"predictions shape: {predictions.shape}")
logger.info(f"references shape: {references.shape}")
import matching_series
metric = matching_series.matching_series()
# metric = evaluate.load("matching_series.py")
results = metric.compute(predictions=predictions, references=references, batch_size=args.batch_size)
print(results)
if args.output:
with open(args.output, "w") as f:
json.dump(results, f)
|