Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from audioldm.utils import default, instantiate_from_config, save_wave | |
from audioldm.latent_diffusion.ddpm import DDPM | |
from audioldm.variational_autoencoder.distributions import DiagonalGaussianDistribution | |
from audioldm.latent_diffusion.util import noise_like | |
from audioldm.latent_diffusion.ddim import DDIMSampler | |
import os | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__( | |
self, | |
device="cuda", | |
first_stage_config=None, | |
cond_stage_config=None, | |
num_timesteps_cond=None, | |
cond_stage_key="image", | |
cond_stage_trainable=False, | |
concat_mode=True, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
scale_factor=1.0, | |
scale_by_std=False, | |
base_learning_rate=None, | |
*args, | |
**kwargs, | |
): | |
self.device = device | |
self.learning_rate = base_learning_rate | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs["timesteps"] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
if conditioning_key is None: | |
conditioning_key = "concat" if concat_mode else "crossattn" | |
if cond_stage_config == "__is_unconditional__": | |
conditioning_key = None | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(conditioning_key=conditioning_key, *args, **kwargs) | |
self.concat_mode = concat_mode | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
self.cond_stage_key_orig = cond_stage_key | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer("scale_factor", torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.cond_stage_forward = cond_stage_forward | |
self.clip_denoised = False | |
def make_cond_schedule( | |
self, | |
): | |
self.cond_ids = torch.full( | |
size=(self.num_timesteps,), | |
fill_value=self.num_timesteps - 1, | |
dtype=torch.long, | |
) | |
ids = torch.round( | |
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond) | |
).long() | |
self.cond_ids[: self.num_timesteps_cond] = ids | |
def register_schedule( | |
self, | |
given_betas=None, | |
beta_schedule="linear", | |
timesteps=1000, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
): | |
super().register_schedule( | |
given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s | |
) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if not self.cond_stage_trainable: | |
if config == "__is_first_stage__": | |
print("Using first stage also as cond stage.") | |
self.cond_stage_model = self.first_stage_model | |
elif config == "__is_unconditional__": | |
print(f"Training {self.__class__.__name__} as an unconditional model.") | |
self.cond_stage_model = None | |
# self.be_unconditional = True | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
assert config != "__is_first_stage__" | |
assert config != "__is_unconditional__" | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
self.cond_stage_model = self.cond_stage_model.to(self.device) | |
def get_first_stage_encoding(self, encoder_posterior): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError( | |
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented" | |
) | |
return self.scale_factor * z | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, "encode") and callable( | |
self.cond_stage_model.encode | |
): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
if len(c) == 1: | |
c = self.cond_stage_model([c[0], c[0]]) | |
c = c[0:1] | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def get_input( | |
self, | |
batch, | |
k, | |
return_first_stage_encode=True, | |
return_first_stage_outputs=False, | |
force_c_encode=False, | |
cond_key=None, | |
return_original_cond=False, | |
bs=None, | |
): | |
x = super().get_input(batch, k) | |
if bs is not None: | |
x = x[:bs] | |
x = x.to(self.device) | |
if return_first_stage_encode: | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
else: | |
z = None | |
if self.model.conditioning_key is not None: | |
if cond_key is None: | |
cond_key = self.cond_stage_key | |
if cond_key != self.first_stage_key: | |
if cond_key in ["caption", "coordinates_bbox"]: | |
xc = batch[cond_key] | |
elif cond_key == "class_label": | |
xc = batch | |
else: | |
# [bs, 1, 527] | |
xc = super().get_input(batch, cond_key) | |
if type(xc) == torch.Tensor: | |
xc = xc.to(self.device) | |
else: | |
xc = x | |
if not self.cond_stage_trainable or force_c_encode: | |
if isinstance(xc, dict) or isinstance(xc, list): | |
c = self.get_learned_conditioning(xc) | |
else: | |
c = self.get_learned_conditioning(xc.to(self.device)) | |
else: | |
c = xc | |
if bs is not None: | |
c = c[:bs] | |
else: | |
c = None | |
xc = None | |
if self.use_positional_encodings: | |
pos_x, pos_y = self.compute_latent_shifts(batch) | |
c = {"pos_x": pos_x, "pos_y": pos_y} | |
out = [z, c] | |
if return_first_stage_outputs: | |
xrec = self.decode_first_stage(z) | |
out.extend([x, xrec]) | |
if return_original_cond: | |
out.append(xc) | |
return out | |
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
if predict_cids: | |
if z.dim() == 4: | |
z = torch.argmax(z.exp(), dim=1).long() | |
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
z = rearrange(z, "b h w c -> b c h w").contiguous() | |
z = 1.0 / self.scale_factor * z | |
return self.first_stage_model.decode(z) | |
def mel_spectrogram_to_waveform(self, mel): | |
# Mel: [bs, 1, t-steps, fbins] | |
if len(mel.size()) == 4: | |
mel = mel.squeeze(1) | |
mel = mel.permute(0, 2, 1) | |
waveform = self.first_stage_model.vocoder(mel) | |
waveform = waveform.cpu().detach().numpy() | |
return waveform | |
def encode_first_stage(self, x): | |
return self.first_stage_model.encode(x) | |
def apply_model(self, x_noisy, t, cond, return_ids=False): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
pass | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
if self.model.conditioning_key == "concat": | |
key = "c_concat" | |
elif self.model.conditioning_key == "crossattn": | |
key = "c_crossattn" | |
else: | |
key = "c_film" | |
cond = {key: cond} | |
x_recon = self.model(x_noisy, t, **cond) | |
if isinstance(x_recon, tuple) and not return_ids: | |
return x_recon[0] | |
else: | |
return x_recon | |
def p_mean_variance( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised: bool, | |
return_codebook_ids=False, | |
quantize_denoised=False, | |
return_x0=False, | |
score_corrector=None, | |
corrector_kwargs=None, | |
): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score( | |
self, model_out, x, t, c, **corrector_kwargs | |
) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError() | |
if clip_denoised: | |
x_recon.clamp_(-1.0, 1.0) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior( | |
x_start=x_recon, x_t=x, t=t | |
) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample( | |
self, | |
x, | |
c, | |
t, | |
clip_denoised=False, | |
repeat_noise=False, | |
return_codebook_ids=False, | |
quantize_denoised=False, | |
return_x0=False, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance( | |
x=x, | |
c=c, | |
t=t, | |
clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
model_mean, _, model_log_variance, logits = outputs | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.0: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = ( | |
(1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))).contiguous() | |
) | |
if return_codebook_ids: | |
return model_mean + nonzero_mask * ( | |
0.5 * model_log_variance | |
).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return ( | |
model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, | |
x0, | |
) | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising( | |
self, | |
cond, | |
shape, | |
verbose=True, | |
callback=None, | |
quantize_denoised=False, | |
img_callback=None, | |
mask=None, | |
x0=None, | |
temperature=1.0, | |
noise_dropout=0.0, | |
score_corrector=None, | |
corrector_kwargs=None, | |
batch_size=None, | |
x_T=None, | |
start_T=None, | |
log_every_t=None, | |
): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = { | |
key: cond[key][:batch_size] | |
if not isinstance(cond[key], list) | |
else list(map(lambda x: x[:batch_size], cond[key])) | |
for key in cond | |
} | |
else: | |
cond = ( | |
[c[:batch_size] for c in cond] | |
if isinstance(cond, list) | |
else cond[:batch_size] | |
) | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = ( | |
tqdm( | |
reversed(range(0, timesteps)), | |
desc="Progressive Generation", | |
total=timesteps, | |
) | |
if verbose | |
else reversed(range(0, timesteps)) | |
) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != "hybrid" | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample( | |
img, | |
cond, | |
ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, | |
return_x0=True, | |
temperature=temperature[i], | |
noise_dropout=noise_dropout, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1.0 - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop( | |
self, | |
cond, | |
shape, | |
return_intermediates=False, | |
x_T=None, | |
verbose=True, | |
callback=None, | |
timesteps=None, | |
quantize_denoised=False, | |
mask=None, | |
x0=None, | |
img_callback=None, | |
start_T=None, | |
log_every_t=None, | |
): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = ( | |
tqdm(reversed(range(0, timesteps)), desc="Sampling t", total=timesteps) | |
if verbose | |
else reversed(range(0, timesteps)) | |
) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != "hybrid" | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample( | |
img, | |
cond, | |
ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, | |
) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1.0 - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample( | |
self, | |
cond, | |
batch_size=16, | |
return_intermediates=False, | |
x_T=None, | |
verbose=True, | |
timesteps=None, | |
quantize_denoised=False, | |
mask=None, | |
x0=None, | |
shape=None, | |
**kwargs, | |
): | |
if shape is None: | |
shape = (batch_size, self.channels, self.latent_t_size, self.latent_f_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = { | |
key: cond[key][:batch_size] | |
if not isinstance(cond[key], list) | |
else list(map(lambda x: x[:batch_size], cond[key])) | |
for key in cond | |
} | |
else: | |
cond = ( | |
[c[:batch_size] for c in cond] | |
if isinstance(cond, list) | |
else cond[:batch_size] | |
) | |
return self.p_sample_loop( | |
cond, | |
shape, | |
return_intermediates=return_intermediates, | |
x_T=x_T, | |
verbose=verbose, | |
timesteps=timesteps, | |
quantize_denoised=quantize_denoised, | |
mask=mask, | |
x0=x0, | |
**kwargs, | |
) | |
def sample_log( | |
self, | |
cond, | |
batch_size, | |
ddim, | |
ddim_steps, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
use_plms=False, | |
mask=None, | |
**kwargs, | |
): | |
if mask is not None: | |
shape = (self.channels, mask.size()[-2], mask.size()[-1]) | |
else: | |
shape = (self.channels, self.latent_t_size, self.latent_f_size) | |
intermediate = None | |
if ddim and not use_plms: | |
# print("Use ddim sampler") | |
ddim_sampler = DDIMSampler(self) | |
samples, intermediates = ddim_sampler.sample( | |
ddim_steps, | |
batch_size, | |
shape, | |
cond, | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
mask=mask, | |
**kwargs, | |
) | |
else: | |
# print("Use DDPM sampler") | |
samples, intermediates = self.sample( | |
cond=cond, | |
batch_size=batch_size, | |
return_intermediates=True, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
mask=mask, | |
unconditional_conditioning=unconditional_conditioning, | |
**kwargs, | |
) | |
return samples, intermediate | |
def generate_sample( | |
self, | |
batchs, | |
ddim_steps=200, | |
ddim_eta=1.0, | |
x_T=None, | |
n_gen=1, | |
unconditional_guidance_scale=1.0, | |
unconditional_conditioning=None, | |
name="waveform", | |
use_plms=False, | |
save=False, | |
**kwargs, | |
): | |
# Generate n_gen times and select the best | |
# Batch: audio, text, fnames | |
assert x_T is None | |
try: | |
batchs = iter(batchs) | |
except TypeError: | |
raise ValueError("The first input argument should be an iterable object") | |
if use_plms: | |
assert ddim_steps is not None | |
use_ddim = ddim_steps is not None | |
# waveform_save_path = os.path.join(self.get_log_dir(), name) | |
# os.makedirs(waveform_save_path, exist_ok=True) | |
# print("Waveform save path: ", waveform_save_path) | |
with self.ema_scope("Plotting"): | |
for batch in batchs: | |
z, c = self.get_input( | |
batch, | |
self.first_stage_key, | |
return_first_stage_outputs=False, | |
force_c_encode=True, | |
return_original_cond=False, | |
bs=None, | |
) | |
text = super().get_input(batch, "text") | |
# Generate multiple samples | |
batch_size = z.shape[0] * n_gen | |
c = torch.cat([c] * n_gen, dim=0) | |
text = text * n_gen | |
if unconditional_guidance_scale != 1.0: | |
unconditional_conditioning = ( | |
self.cond_stage_model.get_unconditional_condition(batch_size) | |
) | |
fnames = list(super().get_input(batch, "fname")) | |
samples, _ = self.sample_log( | |
cond=c, | |
batch_size=batch_size, | |
x_T=x_T, | |
ddim=use_ddim, | |
ddim_steps=ddim_steps, | |
eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning, | |
use_plms=use_plms, | |
) | |
mel = self.decode_first_stage(samples) | |
waveform = self.mel_spectrogram_to_waveform(mel) | |
similarity = self.cond_stage_model.cos_similarity( | |
torch.FloatTensor(waveform).squeeze(1), text | |
) | |
best_index = [] | |
for i in range(z.shape[0]): | |
candidates = similarity[i :: z.shape[0]] | |
max_index = torch.argmax(candidates).item() | |
best_index.append(i + max_index * z.shape[0]) | |
waveform = waveform[best_index] | |
# print("Similarity between generated audio and text", similarity) | |
# print("Choose the following indexes:", best_index) | |
return waveform | |