File size: 10,350 Bytes
ed0485e 8c00b86 2a2a846 1d5717d cbff93c 2a2a846 ed0485e 2a2a846 282dd48 2a2a846 1d5717d 2a2a846 1d5717d 2a2a846 282dd48 2a2a846 1d5717d 2a2a846 1d5717d 2a2a846 1d5717d 8c8dfe8 ed0485e 1d5717d ed0485e 8c8dfe8 2a2a846 8c00b86 f508547 2a2a846 f508547 2a2a846 282dd48 ed0485e 282dd48 2a2a846 282dd48 2a2a846 282dd48 2a2a846 76cf8fb 282dd48 bf4724c 2a2a846 2e66c7c 2a2a846 2e66c7c 2a2a846 2e66c7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import re
import emoji
import logging
from typing import Tuple, Optional
from functools import lru_cache
from collections import Counter
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def count_emojis(text: str) -> int:
"""Подсчет количества эмодзи в тексте"""
return len([c for c in text if c in emoji.EMOJI_DATA])
def extract_mentions(text: str) -> list:
"""Извлечение упоминаний пользователей"""
return re.findall(r'@(\w+)', text)
def is_spam(text: str) -> bool:
"""Определение спам-комментариев"""
spam_indicators = ['🔥' * 3, '❤️' * 3, 'follow me', 'check my']
return any(indicator in text.lower() for indicator in spam_indicators)
def extract_comment_data(comment_text: str) -> Tuple[Optional[str], Optional[str], int, int]:
"""Извлекает данные из комментария"""
try:
# Extract username
username_match = re.search(r'Фото профиля\s+(.+?)\n', comment_text)
username = username_match.group(1).strip() if username_match else None
if not username:
return None, None, 0, 0
# Extract comment text
comment_lines = comment_text.split('\n')
comment = ""
time_pattern = r'\d+\s*(?:ч\.|нед\.)'
# Identify where the comment text starts
for i, line in enumerate(comment_lines):
if re.search(time_pattern, line):
if i + 1 < len(comment_lines):
comment = comment_lines[i + 1].strip()
break
# Clean up comment text
comment = re.sub(r'\d+\s*(?:ч\.|нед\.)\s*$', '', comment)
comment = re.sub(r'"Нравится":\s*\d+\s*Ответить\s*$', '', comment)
# Extract likes
likes_match = re.search(r'"Нравится":\s*(\d+)', comment_text)
likes = int(likes_match.group(1)) if likes_match else 0
# Extract time
time_match = re.search(r'(\d+)\s*(?:ч\.|нед\.)', comment_text)
time = int(time_match.group(1)) if time_match else 0
return username, comment.strip(), likes, time
except Exception as e:
logger.error(f"Error extracting data: {e}")
return None, None, 0, 0
@lru_cache(maxsize=100)
def analyze_post(content_type: str, link: str, post_likes: int,
post_date: str, description: str, comment_count: int,
all_comments: str) -> Tuple[str, str, str, str, str]:
"""Анализирует пост и комментарии"""
try:
if not all_comments or 'Фото профиля' not in all_comments:
return "Ошибка: неверный формат данных", "", "", "", "0"
blocks = re.split(r'(?=Фото профиля)', all_comments)
blocks = [b.strip() for b in blocks if b.strip()]
comments_data = []
total_emojis = 0
mentions = []
spam_count = 0
for block in blocks:
username, comment, likes, time = extract_comment_data(block)
if username and comment:
emoji_count = count_emojis(comment)
comment_mentions = extract_mentions(comment)
is_spam_comment = is_spam(comment)
comments_data.append({
'username': username,
'comment': comment,
'likes': likes,
'time': time,
'emoji_count': emoji_count,
'mentions': comment_mentions,
'is_spam': is_spam_comment
})
total_emojis += emoji_count
mentions.extend(comment_mentions)
if is_spam_comment:
spam_count += 1
# Подсчет статистики
total_comments = len(comments_data)
unique_users = len(set(item['username'] for item in comments_data))
total_likes = sum(item['likes'] for item in comments_data)
avg_likes = total_likes / total_comments if total_comments > 0 else 0
# Топ комментаторы
commenter_counts = Counter(item['username'] for item in comments_data)
top_commenters = commenter_counts.most_common(5)
analytics = f"""
📊 Подробный анализ комментариев:
Основные метрики:
• Всего комментариев: {total_comments}
• Уникальных пользователей: {unique_users}
• Общее количество лайков: {total_likes}
• Среднее количество лайков: {avg_likes:.1f}
Дополнительная информация:
• Использовано эмодзи: {total_emojis}
• Количество упоминаний: {len(mentions)}
• Выявлено спам-комментариев: {spam_count}
Топ комментаторы:
{chr(10).join(f'• {user}: {count} комментария' for user, count in top_commenters if count > 1)}
"""
return (
analytics,
"\n".join(item['username'] for item in comments_data),
"\n".join(item['comment'] for item in comments_data),
"\n".join(str(item['likes']) for item in comments_data),
str(total_likes)
)
except Exception as e:
logger.error(f"Analysis error: {e}")
return str(e), "", "", "", "0"
# Создаем интерфейс Gradio
iface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Radio(
choices=["Photo", "Video"],
label="Content Type",
value="Photo"
),
gr.Textbox(
label="Link to Post",
placeholder="Вставьте ссылку на пост"
),
gr.Number(
label="Likes",
value=0,
minimum=0
),
gr.Textbox(
label="Post Date",
placeholder="YYYY-MM-DD"
),
gr.Textbox(
label="Description",
lines=3,
placeholder="Описание поста"
),
gr.Number(
label="Comment Count",
value=0,
minimum=0
),
gr.Textbox(
label="Comments",
lines=10,
placeholder="Вставьте комментарии"
)
],
outputs=[
gr.Textbox(label="Analytics Summary", lines=15),
gr.Textbox(label="Usernames"),
gr.Textbox(label="Comments"),
gr.Textbox(label="Likes Chronology"),
gr.Textbox(label="Total Likes on Comments")
],
title="Enhanced Instagram Comment Analyzer",
description="Анализатор комментариев Instagram с расширенной аналитикой",
theme="default"
)
if __name__ == "__main__":
try:
iface.launch(
share=True, # Создает публичную ссылку
debug=True, # Включает режим отладки
show_error=True # Показывает подробности ошибок
)
except Exception as e:
logger.error(f"Error launching interface: {e}", exc_info=True)
import re
import emoji
import gradio as gr
from collections import defaultdict, Counter
def extract_comment_data(comment_text: str) -> dict:
"""Extracts data from a comment string."""
comment_data = {}
# Username extraction (improved robustness)
match = re.search(r"Фото профиля\s*(.+?)\n", comment_text)
comment_data["username"] = match.group(1).strip() if match else None
if not comment_data["username"]:
return None # Skip if no username found
# Comment text extraction (handling multiple lines & various time formats)
lines = comment_text.splitlines()
comment_text = ""
for i, line in enumerate(lines):
if re.search(r"\d+\s*(?:нед\.|ч\.)", line): #Matches days or hours
comment_text = "\n".join(lines[i+1:]).strip()
break
comment_text += line + "\n"
comment_text = comment_text.strip()
comment_data["comment"] = comment_text
# Likes extraction (more flexible regex)
match = re.search(r'"Нравится":\s*(\d+)', comment_text)
comment_data["likes"] = int(match.group(1)) if match else 0
# Time extraction (more robust to variations)
time_match = re.search(r"(\d+)\s*(?:нед\.|ч\.)", comment_text)
comment_data["time"] = int(time_match.group(1)) if time_match else None
return comment_data
def analyze_comments(comments_text: str) -> dict:
"""Analyzes a block of comments text."""
comments = []
blocks = re.split(r'(Фото профиля)', comments_text, flags=re.IGNORECASE)
for i in range(1,len(blocks),2):
comment_data = extract_comment_data(blocks[i])
if comment_data:
comments.append(comment_data)
# Aggregate data
analytics = defaultdict(int)
unique_users = set()
top_commenters = Counter()
for comment in comments:
analytics["total_comments"] += 1
unique_users.add(comment["username"])
analytics["total_likes"] += comment["likes"]
top_commenters[comment["username"]] += 1
analytics["emojis"] += len(emoji.demojize(comment["comment"])) # Counts emojis
analytics["unique_users"] = len(unique_users)
analytics["avg_likes"] = analytics["total_likes"] / analytics["total_comments"] if analytics["total_comments"] > 0 else 0
analytics["top_commenters"] = dict(top_commenters.most_common(5))
return analytics, comments
iface = gr.Interface(
fn=analyze_comments,
inputs=gr.Textbox(label="Instagram Comments (Paste here)", lines=10),
outputs=[
gr.Textbox(label="Analytics Summary"),
gr.JSON(label="Individual Comment Data")
],
title="Enhanced Instagram Comment Analyzer",
description="Improved analyzer for Instagram comments.",
)
iface.launch(share=True) |