Spaces:
Sleeping
Sleeping
File size: 9,286 Bytes
b8c83d8 02c6b99 b8c83d8 02c6b99 b8c83d8 02c6b99 b8c83d8 b1c508f 02c6b99 b1c508f 02c6b99 b1c508f b8c83d8 be7a922 02c6b99 b8c83d8 be7a922 b8c83d8 02c6b99 899836e 02c6b99 b8c83d8 be7a922 02c6b99 b8c83d8 02c6b99 b8c83d8 02c6b99 b8c83d8 02c6b99 b8c83d8 be7a922 02c6b99 b8c83d8 02c6b99 899836e 02c6b99 899836e 02c6b99 b8c83d8 02c6b99 b8c83d8 02c6b99 cae0459 b8c83d8 b1c508f be7a922 b1c508f be7a922 b1c508f 02c6b99 b1c508f 02c6b99 b1c508f be7a922 02c6b99 be7a922 cae0459 be7a922 b8c83d8 02c6b99 be7a922 02c6b99 cae0459 02c6b99 cae0459 02c6b99 cae0459 be7a922 02c6b99 b8c83d8 02c6b99 be7a922 02c6b99 be7a922 02c6b99 be7a922 cae0459 be7a922 cae0459 02c6b99 be7a922 02c6b99 be7a922 02c6b99 be7a922 02c6b99 be7a922 b8c83d8 cae0459 b8c83d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
{
"cells": [
{
"cell_type": "markdown",
"id": "f2d27d42-74aa-44cb-8ab6-5a0f856dcca0",
"metadata": {},
"source": [
"# Merging state, county, and city polygons with political parties"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d179ded1-6235-47ed-bbfb-6d72468188d5",
"metadata": {},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"import streamlit as st\n",
"import ibis.expr.datatypes as dt # Make sure to import the necessary module\n",
"\n",
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])"
]
},
{
"cell_type": "markdown",
"id": "b9bc2d50-481b-4f62-a74b-4a576ff89ecd",
"metadata": {},
"source": [
"# State "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "322b9a85-bdf9-45f9-9b19-695cc1b996e8",
"metadata": {},
"outputs": [],
"source": [
"#getting party\n",
"state = (conn\n",
" .read_csv(\"1976-2020-president.csv\")\n",
" # .filter(_. year >=2000)\n",
" .rename(state=\"state_po\" , party = \"party_simplified\") # rename columns\n",
" .group_by([\"year\", \"state\"])\n",
" .aggregate(party=_.party.argmax(_.candidatevotes)) # winning party \n",
" .select(\"year\", \"state\", \"party\") # select only relevant columns\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ab49b51-d6fe-47b3-9bed-b23b5ecf7f0e",
"metadata": {},
"outputs": [],
"source": [
"# merging with state polygons\n",
"state_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-state-territory.parquet\"\n",
"\n",
"df_state = (conn\n",
" .read_parquet(state_boundaries)\n",
" .rename(state = \"STUSPS\", state_ = \"NAME\")\n",
" .select(\"state\",\"geometry\")\n",
" .join(state,\"state\",how = \"inner\")\n",
" .mutate(county = None)\n",
" .mutate(municipal = None)\n",
" .mutate(jurisdiction = ibis.literal(\"State\"))\n",
" .cast({\"geometry\": \"geometry\",\"county\":\"string\",\"municipal\": \"string\"})\n",
" .select(\"state\", \"county\", \"municipal\",\"jurisdiction\",\"geometry\", \"year\", \"party\")\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "170ba045-8848-4a99-a4f6-68bde22428af",
"metadata": {},
"source": [
"# County"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0231c801-82e2-45be-9ec5-607d5588a3e5",
"metadata": {},
"outputs": [],
"source": [
"# getting party\n",
"county = (conn\n",
" .read_csv(\"countypres_2000-2020.csv\")\n",
" .filter((_.totalvotes > 0)) # filter empty votes\n",
" .rename(state=\"state_po\", state_name = \"state\") \n",
" .mutate(county = _.county_name + ibis.literal(\" COUNTY\"))\n",
" .group_by([\"year\", \"state\", \"county\", \"state_name\", \"party\"])\n",
" .aggregate(\n",
" total_candidate_votes=_.candidatevotes.sum() #getting total votes per candidate \n",
" )\n",
" .group_by([\"year\", \"state\", \"county\", \"state_name\"])\n",
" .aggregate(\n",
" party=_.party.argmax(_.total_candidate_votes) # party with the highest total votes\n",
" )\n",
" .select(\"year\", \"state\", \"county\", \"party\",\"state_name\") \n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "179b5066-030c-4302-a8cf-8216a753080e",
"metadata": {},
"outputs": [],
"source": [
"# merging with county polygons\n",
"county_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-county.parquet\"\n",
"df_county = (conn\n",
" .read_parquet(county_boundaries)\n",
" .mutate(county = _.NAMELSAD.upper(), state_name = _.STATE_NAME.upper())\n",
" .select(\"state_name\",\"county\",\"geometry\")\n",
" .join(county,[\"state_name\",\"county\"],how = \"inner\")\n",
" .mutate(municipal = None)\n",
" .cast({\"geometry\": \"geometry\",\"municipal\": \"string\"})\n",
" .mutate(jurisdiction = ibis.literal(\"County\"))\n",
" .select(\"state\", \"county\", \"municipal\",\"jurisdiction\",\"geometry\", \"year\", \"party\")\n",
" )\n"
]
},
{
"cell_type": "markdown",
"id": "8c12fd16-a953-4273-9e0f-44b50eacf633",
"metadata": {},
"source": [
"# Getting Municipals "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3429fea-7c0d-4838-bcbb-6552079dc3b6",
"metadata": {},
"outputs": [],
"source": [
"localities_boundaries = \"us_localities.parquet\"\n",
"locality = (conn\n",
" .read_parquet(localities_boundaries)\n",
" .mutate(county = _.county.upper())\n",
" .mutate(municipal = _.municipal.upper())\n",
" )\n",
"\n",
"df_city = (county\n",
" .drop(\"state_name\")\n",
" .join(locality, [\"state\",\"county\"], how = \"inner\")\n",
" .cast({\"geometry\": \"geometry\"})\n",
" .mutate(jurisdiction = ibis.literal(\"Municipal\"))\n",
" .select(\"state\", \"county\", \"municipal\",\"jurisdiction\",\"geometry\", \"year\", \"party\")\n",
" )\n"
]
},
{
"cell_type": "markdown",
"id": "ae5b417d-4266-456d-952c-ac2696234ea0",
"metadata": {},
"source": [
"# Make PMTiles with only state/county. Each jurisdiction type is its own layer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12cdf02e-bc22-4a5f-91b9-00a8eee587bd",
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"from huggingface_hub import HfApi, login\n",
"import streamlit as st\n",
"\n",
"login(st.secrets[\"HF_TOKEN\"])\n",
"# api = HfApi(add_to_git_credential=False)\n",
"api = HfApi()\n",
"\n",
"def hf_upload(file, repo_id):\n",
" info = api.upload_file(\n",
" path_or_fileobj=file,\n",
" path_in_repo=file,\n",
" repo_id=repo_id,\n",
" repo_type=\"dataset\",\n",
" )\n",
"def generate_pmtiles(input_file, input_file2, output_file, max_zoom=12):\n",
" # Ensure Tippecanoe is installed\n",
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
"\n",
" # Construct the Tippecanoe command\n",
" command = [\n",
" \"tippecanoe\",\n",
" \"-o\", output_file,\n",
" \"-zg\",\n",
" \"--extend-zooms-if-still-dropping\",\n",
" \"--force\",\n",
" \"--projection\", \"EPSG:4326\", \n",
" \"-L\",\"state:\"+input_file,\n",
" \"-L\",\"county:\"+input_file2\n",
" ]\n",
" # Run Tippecanoe\n",
" try:\n",
" subprocess.run(command, check=True)\n",
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"Error running Tippecanoe: {e}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "24df77fb-c881-4491-b7ca-7f3a3023cee0",
"metadata": {},
"outputs": [],
"source": [
"gdf_state = df_state.execute().set_crs(\"EPSG:4326\")\n",
"gdf_state.to_file(\"party_state.geojson\")\n",
"\n",
"gdf_county = df_county.execute().set_crs(\"EPSG:4326\")\n",
"gdf_county.to_file(\"party_county.geojson\")\n",
"\n",
"# city data too large to add to pmtiles :( \n",
"# gdf_city = df_city.execute().set_crs(\"EPSG:4326\")\n",
"# gdf_city.to_file(\"party_municipal.geojson\")\n",
"\n",
"generate_pmtiles(\"party_state.geojson\", \"party_county.geojson\", \"party_polygons.pmtiles\")\n",
"hf_upload(\"party_polygons.pmtiles\", \"boettiger-lab/landvote\")\n"
]
},
{
"cell_type": "markdown",
"id": "190169bb-5bfb-4eb7-a135-c5ce0e316595",
"metadata": {},
"source": [
"# Combine all 3 jurisdiction types into a parquet."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4ad8ad0a-afb3-427f-8b52-ea328e06ce85",
"metadata": {},
"outputs": [],
"source": [
"df_temp = df_county.union(df_city)\n",
"df = df_temp.union(df_state)\n",
"df.execute().set_crs(\"EPSG:4326\").to_parquet(\"party_polygons.parquet\")\n",
"hf_upload(\"party_polygons.parquet\", \"boettiger-lab/landvote\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|