File size: 13,315 Bytes
1aa7583
 
 
a47ab28
45a8c07
a47ab28
 
 
 
 
 
 
45a8c07
1aa7583
 
 
 
1c76a96
 
 
ca93f86
1c76a96
 
ca93f86
b18f1b3
 
 
 
 
 
a47ab28
 
 
 
 
 
 
 
 
45a8c07
cc8b36c
a47ab28
cc8b36c
 
a47ab28
cc8b36c
a47ab28
1c76a96
a47ab28
263f645
a47ab28
 
1c76a96
a47ab28
46725fa
2059c4a
a47ab28
 
36961ed
 
b18f1b3
a47ab28
 
 
 
 
b18f1b3
 
 
d328343
b18f1b3
a47ab28
6284181
a47ab28
36961ed
a47ab28
36961ed
a47ab28
 
2059c4a
 
45d9637
a47ab28
 
 
 
 
36961ed
 
a47ab28
2059c4a
 
45d9637
a47ab28
 
 
 
 
 
 
 
 
 
36961ed
 
a47ab28
45a8c07
a47ab28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a8c07
a47ab28
45a8c07
a47ab28
 
 
8424379
46bc3f8
a47ab28
 
45a8c07
 
 
6284181
45a8c07
 
 
 
6284181
45a8c07
 
a47ab28
45a8c07
6284181
45a8c07
 
 
a47ab28
45a8c07
 
 
 
 
 
a47ab28
45a8c07
a47ab28
 
45a8c07
 
 
a47ab28
45a8c07
 
 
6284181
45a8c07
 
6284181
a47ab28
45a8c07
6284181
45a8c07
a47ab28
 
45a8c07
 
a47ab28
45a8c07
 
 
 
a47ab28
45a8c07
 
a47ab28
 
 
 
 
 
 
45a8c07
 
a47ab28
 
45a8c07
 
 
b18f1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6284181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d9637
6284181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059c4a
45d9637
 
 
ca93f86
 
 
45d9637
ca93f86
 
45d9637
b18f1b3
45d9637
 
 
 
 
b18f1b3
45d9637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2059c4a
a47ab28
6284181
 
 
 
 
 
 
7d06004
b18f1b3
 
 
 
 
 
 
 
 
 
 
 
2059c4a
 
 
b18f1b3
 
 
2059c4a
45a8c07
6284181
a47ab28
 
7d06004
a47ab28
6284181
a47ab28
 
45a8c07
6284181
 
a47ab28
656f25c
36961ed
 
a47ab28
2059c4a
b18f1b3
46725fa
2059c4a
b18f1b3
 
 
 
 
 
 
 
 
 
6284181
b18f1b3
 
ca93f86
 
 
 
b18f1b3
 
 
 
 
 
 
ca93f86
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import ibis
from ibis import _

import streamlit as st
import altair as alt
import os
import pandas as pd
import matplotlib.pyplot as plt
from pandasai.llm.openai import OpenAI
from pandasai import Agent
from pandasai.responses.streamlit_response import StreamlitResponse
import leafmap.maplibregl as leafmap

st.set_page_config(layout="wide",
                   page_title="TPL LandVote",
                   page_icon=":globe:")

'''
# LandVote Prototype

An experimental platform for visualizing data on ballot measures for conservation, based on data from <https://landvote.org/> curated by the Trust for Public Land. 
'''

st.caption("We visualize each voting jurisdiction with green if a conservation measure passed and orange if it failed. The intensity of green or orange reflects the level of support or opposition, with darker green representing stronger support for passed measures and darker orange representing lower support for failed measures. The height of county and city jurisdictions represents the amount of funding proposed by the measure.")






COLORS = {
    "dark_orange": "#ab5601",
    "light_orange": "#f3d3b1",
    "grey": "#d3d3d3",
    "light_green": "#c3dbc3",
    "dark_green": "#417d41",
    "dem_blue": "#1b46c2",
    "rep_red": "#E81B23"
}


## chatbot
llm = OpenAI(api_token=st.secrets["OPENAI_API_KEY"])
df1 = pd.read_csv("data.csv")
agent = Agent([df1], config={"verbose": True, "response_parser": StreamlitResponse, "llm": llm})

year = st.slider("Select a year", 1988, 2024, 2022, 1)

 

votes_pmtiles = "https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/votes.pmtiles"
votes_parquet = "https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/votes.parquet"

# get parquet data for charts
con = ibis.duckdb.connect(extensions=["spatial"])
votes = (con
         .read_parquet(votes_parquet)
         .cast({"geometry": "geometry"})
        )

def create_chart(df, y_column, ylab, title, color, chart_type="line"):
    # color encoding - color is a list or single value 
    color_encoding = (
        alt.Color('party:N', scale=alt.Scale(domain=["DEMOCRAT", "REPUBLICAN"], range=color))
        if isinstance(color, list) else alt.value(color)
    )
    
    # Set the mark type based on chart_type
    mark = alt.Chart(df).mark_line(strokeWidth=3) if chart_type == "line" else alt.Chart(df).mark_bar()

    return mark.encode(
        x=alt.X('year:N', title='Year'),
        y=alt.Y(f'{y_column}:Q', title=ylab),
        color=color_encoding  
    ).properties(
        title=title
    )

# percentage of measures passing, per party
def get_passes(votes):
    return (votes
        # .filter(_.year >= 2000)
        .group_by("year", "party")
        .aggregate(total=_.count(), passes=_.Status.isin(["Pass", "Pass*"]).sum())
        .mutate(percent_passed=(_.passes / _.total).round(2),
                color=ibis.case().when(_.party == "DEMOCRAT", COLORS["dem_blue"]).else_(COLORS["rep_red"]).end())
        .to_pandas())


# cumulative funding over time 
def funding_chart(votes):
   return (votes
           # .filter(_.year >= 2000)
          .mutate(amount=_.amount.replace('$', '')
                  .replace(',', '')
                  .cast('float64'))
          .filter(_.Status.isin(["Pass", "Pass*"]))
          .group_by("year")
          .aggregate(total_funding=_.amount.sum())
          .order_by("year")
          .mutate(cumulative_funding=_.total_funding.cumsum()/1e9)
          .to_pandas()
         )
    

#color fill for measure status
paint_fill = {
    "fill-color": [
        "case",
        ["==", ["get", "Status"], "Pass"],
        [
            "interpolate", ["linear"], [
                "to-number", ["slice", ["get", "yes"], 0, -1]  # convert 'yes' string to number
            ],
            50, COLORS["grey"],
            55, COLORS["light_green"],
            100, COLORS["dark_green"] # higher yes % -> darker green
        ],
        ["==", ["get", "Status"], "Fail"],
        [
            "interpolate", ["linear"], [
                "to-number", ["slice", ["get", "yes"], 0, -1]
            ],
            0, COLORS["dark_orange"],
            50, COLORS["light_orange"], # lower yes % -> darker orange
            67, COLORS["grey"] # 67 is max in our data 
        ],
        COLORS["grey"]
    ]
}

# for status, height depends on funding 
paint_extrusion = {
    "fill-extrusion-color": paint_fill["fill-color"],
    "fill-extrusion-height": ["*", ["to-number", ["get", "log_amount"]], 5000]
}



# pmtiles style for status 
def get_style_status(jurisdiction):
    if jurisdiction == "State":
        name = "state"
        label = "States"
        paint_type = paint_fill
        layer_type = "fill"
    elif jurisdiction == "County":
        name = "county"
        label = "Counties"
        paint_type = paint_extrusion
        layer_type = "fill-extrusion"
    else:  # Municipal
        name = "municipal"
        label = "Cities"
        paint_type = paint_extrusion
        layer_type = "fill-extrusion"

    return {
        "layers": [
            {
                "id": label,
                "source": name,
                "source-layer": name,
                "type": layer_type,
                "filter": ["==", ["get", "year"], year],
                "paint": paint_type
            }
        ]
    }


# pmtiles style for party 
def get_style_party(jurisdiction):
    if jurisdiction == "State":
        name = "state"
        label = "States"
    elif jurisdiction == "County":
        name = "county"
        label = "Counties"
    else:  # Municipal
        name = "municipal"
        label = "Cities"

    # Return style dictionary for political party
    return {
        "layers": [
            {
                "id": label, 
                "source": name,
                "source-layer": name,
                "type": "fill",
                "filter": [
                    "==", ["get", "year"], year
                ],
                "paint": {
                    "fill-color": {
                        "property": "party",
                        "type": "categorical",
                        "stops": [
                            ["DEMOCRAT", COLORS["dem_blue"]],
                            ["REPUBLICAN", COLORS["rep_red"]]
                        ]
                    }
                }
            }
        ]
    }



justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
justice40_fill = {
        'property': 'Disadvan',
        'type': 'categorical',
        'stops': [
            [0, "rgba(255, 255, 255, 0)"],
            [1, "rgba(0, 0, 139, 1)"]]}
justice40_style = {
    "version": 8,
    "sources": {
        "source1": {
            "type": "vector",
            "url": "pmtiles://" + justice40,
            "attribution": "Justice40"}
    },
    "layers": [{
            "id": "Justice40",
            "source": "source1",
            "source-layer": "DisadvantagedCommunitiesCEJST",
            "type": "fill",
            "paint": {"fill-color": justice40_fill, "fill-opacity": 0.6}}]
}





sv_pmtiles = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles"
sv_style =  {
        "layers": [
            {
                "id": "SVI",
                "source": "Social Vulnerability Index",
                "source-layer": "SVI2020_US_county",
                "type": "fill",
                "paint": {
                    "fill-color": 
                        ["interpolate", ["linear"], ["get", "RPL_THEMES"],
                0, "#FFE6EE",
                1, "#850101"] 
                        
                    }
                }
        ]
}

party_pmtiles = "https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/party_polygons_all.pmtiles"

recent_election_year = year - year%4 
party_style =  {
        "layers": [
            {
                "id": "Party",
                "source": "Political Parties",
                "source-layer": "county",
                "type": "fill",
                "filter": [
                    "==", ["get", "year"], recent_election_year
                ],
                "paint": {
                    "fill-color": {
                        "property": "party",
                        "type": "categorical",
                        "stops": [
                            ["DEMOCRAT", COLORS["dem_blue"]],
                            ["REPUBLICAN", COLORS["rep_red"]]
                        ]
                    }
                }
            }
        ]
    }


with st.sidebar:
    color_choice = st.radio("Color by:", ["Measure Status", "Political Party"])
    st.divider()
    
    "Data Layers:"
    # with st.expander("Social Justice"): 

    social_toggle = st.toggle("Social Vulnerability Index")
    justice_toggle = st.toggle("Climate and Economic Justice")
    party_toggle = st.toggle("Political Parties")

    st.divider()

    '''
    ## Data Assistant (experimental)

    Ask questions about the LandVote data, like:

    - What are the top states for approved conservation funds?
    - Plot the total funds spent in conservation each year.
    - What city has approved the most funds in a single measure? What was the description of that vote?
    - Which state has had largest number measures fail? What is that as a fraction of it's total measures?
    '''
    
    prompt = st.chat_input("Ask about the data")
    if prompt:
        with st.spinner():
            resp = agent.chat(prompt)
            if os.path.isfile('exports/charts/temp_chart.png'):
                im = plt.imread('exports/charts/temp_chart.png')
                st.image(im)
                os.remove('exports/charts/temp_chart.png')
            st.write(resp)

              
m = leafmap.Map(style="positron", center=(-100, 40), zoom=3)


if social_toggle:
    m.add_pmtiles(sv_pmtiles, style = sv_style ,visible=True, opacity=0.3, tooltip=True)

if party_toggle:
    m.add_pmtiles(party_pmtiles, style = party_style ,visible=True, opacity=0.3, tooltip=True)

if justice_toggle:
    m.add_pmtiles(justice40, style=justice40_style, visible=True, name="Justice40",  opacity=0.3, tooltip=True)



#compute percentage passed in given year 
passed_year = votes.filter(_.year == year).filter(_.Status.isin(["Pass","Pass*"])).count().execute()
total_year= votes.filter(_.year == year).count().execute()
year_passed = (passed_year/total_year*100).round(2)
f"{year_passed}% Measures Passed in {year}"  

#compute percentage passed over entire dataset
passed = votes.filter(_.Status.isin(["Pass","Pass*"])).count().execute()
total = votes.count().execute()
overall_passed = (passed/total*100).round(2)
f"{overall_passed}% Measures Passed from 1988 - 2024 \n"  



if color_choice == "Measure Status":
    m.add_pmtiles(votes_pmtiles, style=get_style_status("State"), visible=True, opacity=0.8, tooltip=True)
    m.add_pmtiles(votes_pmtiles, style=get_style_status("County"), visible=True, opacity=1.0, tooltip=True)
    m.add_pmtiles(votes_pmtiles, style=get_style_status("Municipal"), visible=True, opacity=1.0, tooltip=True)

elif color_choice == "Political Party":
    m.add_pmtiles(votes_pmtiles, style=get_style_party("State"), visible=True, opacity=0.8, tooltip=True)
    m.add_pmtiles(votes_pmtiles, style=get_style_party("County"), visible=True, opacity=1.0, tooltip=True)
    m.add_pmtiles(votes_pmtiles, style=get_style_party("Municipal"), visible=True, opacity=1.0, tooltip=True)



m.add_layer_control()
m.to_streamlit()


# display charts
df_passes = get_passes(votes)
st.altair_chart(create_chart(df_passes, "percent_passed", "Percent Passed","% of Measures Passed", [COLORS["dem_blue"], COLORS["rep_red"]], chart_type="line"), use_container_width=True)

df_funding = funding_chart(votes)
st.altair_chart(create_chart(df_funding, "cumulative_funding", "Billions of Dollars", "Cumulative Funding", COLORS["dark_green"], chart_type="bar"), use_container_width=True)

st.divider()
footer = st.container()

'''
# Credits
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley License: BSD-2-clause

## Data sources

- TPL LandVote Database by Trust for Public Land. Data: https://tpl.quickbase.com/db/bbqna2qct?a=dbpage&pageID=8. Citation: The Trust for Public Land, LandVote®, 2024, www.landvote.org., License: Public Domain

- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40, Data: https://beta.source.coop/repositories/cboettig/justice40/description/. License: Public Domain

- CDC 2020 Social Vulnerability Index by US Census Track. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain

- County Presidential Election Returns 2000-2020 by MIT Election Data and Science Lab. Citation: https://doi.org/10.7910/DVN/VOQCHQ. License: Public Domain.

- U.S. President 1976–2020 by MIT Election Data and Science Lab. Citation: https://doi.org/10.7910/DVN/42MVDX. License: Public Domain.



'''

st.caption("***Political affiliation is determined by the party that received the majority vote in the most recent presidential election for each jurisdiction. For counties and states, this reflects the majority vote in that area. For cities, affiliation is based on the party of the county in which the city is located.")