Spaces:
Sleeping
Sleeping
File size: 8,324 Bytes
1c76a96 1aa7583 1c76a96 d1dca6b 1c76a96 656f25c 1c76a96 c67e57e 1c76a96 1aa7583 c67e57e 1aa7583 1c76a96 656f25c 1aa7583 1c76a96 656f25c 1aa7583 d1dca6b 1aa7583 d1dca6b 656f25c 1c76a96 656f25c 1c76a96 656f25c d1dca6b 656f25c 1aa7583 656f25c 1aa7583 d1dca6b c67e57e 1c76a96 c67e57e 1c76a96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "b313a218-4778-4d5b-9036-f0370d4212a0",
"metadata": {},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"import streamlit as st\n",
"\n",
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"\n",
"state_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-state-territory.parquet\"\n",
"county_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-county.parquet\"\n",
"states = conn.read_parquet(state_boundaries).rename(state_id = \"STUSPS\", state = \"NAME\")\n",
"county = conn.read_parquet(county_boundaries).rename(county = \"NAMELSAD\", state = \"STATE_NAME\")\n",
"\n",
"localities_boundaries = \"us_localities.parquet\"\n",
"locality = conn.read_parquet(localities_boundaries)\n",
"\n",
"\n",
"votes = conn.read_csv(\"landvote.csv\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba4d8915-cde3-4ef9-ad8c-7759ed2c8a13",
"metadata": {},
"outputs": [],
"source": [
"vote_county = (votes\n",
" .filter(_[\"Jurisdiction Type\"] == \"County\")\n",
" .rename(county = \"Jurisdiction Name\", state_id = \"State\")\n",
" .mutate(key = _.county + ibis.literal('-') + _.state_id)\n",
" .rename(amount = 'Conservation Funds at Stake', yes = '% Yes')\n",
" .mutate(amount_n=_.amount.replace('$', '').replace(',', '').cast('float'))\n",
" .mutate(log_amount=_.amount_n.log())\n",
" .mutate(year=_['Date'].year().cast('int32'))\n",
" .select('key', 'Status', 'yes', 'year', 'amount', 'log_amount', )\n",
" )\n",
"df_county = (county\n",
" .join(states.select(\"state\", \"state_id\"), \"state\")\n",
" .mutate(key = _.county + ibis.literal('-') + _.state_id)\n",
" .select('key', 'geometry')\n",
" .right_join(vote_county, \"key\")\n",
" .drop('key_right')\n",
" .mutate(jurisdiction = ibis.literal(\"County\"))\n",
" .cast({\"geometry\": \"geometry\"})\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0cce23c9-245c-4c28-9523-0231eb5acc17",
"metadata": {},
"outputs": [],
"source": [
"vote_local = (votes\n",
" .filter(_[\"Jurisdiction Type\"] == \"Municipal\")\n",
" .rename(city = \"Jurisdiction Name\", state_id = \"State\")\n",
" .mutate(key = _.city + ibis.literal('-') + _.state_id)\n",
" .rename(amount = 'Conservation Funds at Stake', yes = '% Yes')\n",
" .mutate(amount_n=_.amount.replace('$', '').replace(',', '').cast('float'))\n",
" .mutate(log_amount=_.amount_n.log())\n",
" .mutate(year=_['Date'].year().cast('int32'))\n",
" .select('key', 'Status', 'yes', 'year', 'amount', 'log_amount', )\n",
" )\n",
"\n",
"df_local = (locality\n",
" .mutate(key = _.name + ibis.literal('-') + _.state_id)\n",
" .select('key', 'geometry')\n",
" .right_join(vote_local, \"key\")\n",
" .drop('key_right')\n",
" .mutate(jurisdiction = ibis.literal(\"Municipal\"))\n",
" .cast({\"geometry\": \"geometry\"})\n",
" \n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1e81807-8ce3-44bf-9a1c-8563fa33817c",
"metadata": {},
"outputs": [],
"source": [
"df = df_county.union(df_local)\n",
"df.execute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d3bee26-7ca8-490c-be5b-fc69a6c3db2a",
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"import os\n",
"from huggingface_hub import HfApi, login\n",
"import streamlit as st\n",
"\n",
"login(st.secrets[\"HF_TOKEN\"])\n",
"# api = HfApi(add_to_git_credential=False)\n",
"api = HfApi()\n",
"\n",
"def hf_upload(file, repo_id):\n",
" info = api.upload_file(\n",
" path_or_fileobj=file,\n",
" path_in_repo=file,\n",
" repo_id=repo_id,\n",
" repo_type=\"dataset\",\n",
" )\n",
"def generate_pmtiles(input_file, output_file, max_zoom=12):\n",
" # Ensure Tippecanoe is installed\n",
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
"\n",
" # Construct the Tippecanoe command\n",
" command = [\n",
" \"tippecanoe\",\n",
" \"-o\", output_file,\n",
" \"-z\", str(max_zoom),\n",
" \"--drop-densest-as-needed\",\n",
" \"--extend-zooms-if-still-dropping\",\n",
" \"--force\",\n",
" input_file\n",
" ]\n",
"\n",
" # Run Tippecanoe\n",
" try:\n",
" subprocess.run(command, check=True)\n",
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"Error running Tippecanoe: {e}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac91a627-70a8-4e60-b3ef-66e9c1e02762",
"metadata": {},
"outputs": [],
"source": [
"df.execute().to_file(\"vote.geojson\")\n",
"generate_pmtiles(\"vote.geojson\", \"vote.pmtiles\")\n",
"hf_upload(\"vote.pmtiles\", \"boettiger-lab/landvote\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa397626-6e94-4ab9-a3bb-2bcbd14e8d40",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import leafmap.maplibregl as leafmap\n",
"m = leafmap.Map(style=\"positron\")\n",
"\n",
"url = \"https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/vote.pmtiles\"\n",
"\n",
"#gdf = df.filter(_.year==1988).execute()\n",
"#gdf.to_file(\"vote.geojson\")\n",
"\n",
"outcome = [\n",
" 'match',\n",
" ['get', 'Status'], \n",
" \"Pass\", '#2E865F',\n",
" \"Fail\", '#FF3300', \n",
" '#ccc'\n",
" ]\n",
"paint = {\"fill-extrusion-color\": outcome, \n",
" \"fill-extrusion-opacity\": 0.7,\n",
" \"fill-extrusion-height\": [\"*\", [\"get\", \"log_amount\"], 5000],\n",
" }\n",
"style = {\n",
" \"layers\": [\n",
" {\n",
" \"id\": \"votes\",\n",
" \"source\": \"vote\",\n",
" \"source-layer\": \"vote\",\n",
" \"type\": \"fill-extrusion\",\n",
" \"filter\": [\n",
" \"==\",\n",
" [\"get\", \"year\"],\n",
" 1988,\n",
" ], # only show buildings with height info\n",
" \"paint\": paint\n",
" },\n",
" ],\n",
"}\n",
"\n",
"m.add_pmtiles(\n",
" url,\n",
" style=style,\n",
" visible=True,\n",
" opacity=1.0,\n",
" tooltip=True,\n",
" fit_bounds=False,\n",
")\n",
"#m.add_layer_control()\n",
"m\n",
"\n",
"\n",
"\n",
"#m.add_geojson(\"vote.geojson\", \"fill-extrusion\", paint = paint)\n",
"#m.add_gdf(gdf, \"fill-extrusion\", paint = paint)\n",
"#m"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e521f00-1b04-4016-9a6a-71a12e846dd3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|