Spaces:
Sleeping
Sleeping
File size: 13,917 Bytes
1c76a96 97eac3a 1c76a96 d1dca6b 1c76a96 656f25c 1c76a96 c67e57e 97eac3a c67e57e 97eac3a c67e57e 97eac3a c67e57e 97eac3a c67e57e 97eac3a c67e57e 97eac3a 1c76a96 97eac3a 1aa7583 263f645 97eac3a 263f645 1aa7583 c67e57e 1aa7583 97eac3a 1aa7583 97eac3a 1aa7583 263f645 97eac3a 263f645 97eac3a 263f645 97eac3a 263f645 97eac3a 263f645 97eac3a 263f645 1aa7583 97eac3a 1aa7583 97eac3a 263f645 97eac3a 263f645 97eac3a 263f645 97eac3a 1c76a96 656f25c 1aa7583 d1dca6b 97eac3a 656f25c 1c76a96 656f25c 1c76a96 656f25c d1dca6b 656f25c 1aa7583 97eac3a 1aa7583 656f25c 1aa7583 97eac3a 263f645 97eac3a d1dca6b c67e57e 97eac3a c67e57e 1c76a96 97eac3a 1c76a96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 26,
"id": "b313a218-4778-4d5b-9036-f0370d4212a0",
"metadata": {},
"outputs": [],
"source": [
"import ibis\n",
"from ibis import _\n",
"import streamlit as st\n",
"\n",
"conn = ibis.duckdb.connect(extensions=[\"spatial\"])\n",
"\n",
"state_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-state-territory.parquet\"\n",
"county_boundaries = \"https://data.source.coop/cboettig/us-boundaries/us-county.parquet\"\n",
"states = conn.read_parquet(state_boundaries).rename(state_id = \"STUSPS\", state = \"NAME\")\n",
"county = conn.read_parquet(county_boundaries).rename(county = \"NAMELSAD\", state = \"STATE_NAME\")\n",
"\n",
"localities_boundaries = \"us_localities.parquet\"\n",
"locality = conn.read_parquet(localities_boundaries)\n",
"\n",
"\n",
"votes = conn.read_csv(\"landvote.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "ba4d8915-cde3-4ef9-ad8c-7759ed2c8a13",
"metadata": {},
"outputs": [],
"source": [
"vote_county = (votes\n",
" .filter(_[\"Jurisdiction Type\"] == \"County\")\n",
" .rename(county = \"Jurisdiction Name\", state_id = \"State\")\n",
" .mutate(key = _.county + ibis.literal('-') + _.state_id)\n",
" .rename(amount = 'Conservation Funds at Stake', yes = '% Yes')\n",
" .mutate(amount_n=_.amount.replace('$', '').replace(',', '').cast('float'))\n",
" .mutate(log_amount=_.amount_n.log())\n",
" .mutate(year=_['Date'].year().cast('int32'))\n",
" .select('key', 'Status', 'yes', 'year', 'amount', 'log_amount', )\n",
" )\n",
"df_county = (county\n",
" .join(states.select(\"state\", \"state_id\"), \"state\")\n",
" .mutate(key = _.county + ibis.literal('-') + _.state_id)\n",
" .select('key', 'geometry')\n",
" .right_join(vote_county, \"key\")\n",
" .drop('key_right')\n",
" .mutate(jurisdiction = ibis.literal(\"County\"))\n",
" .cast({\"geometry\": \"geometry\"})\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "0cce23c9-245c-4c28-9523-0231eb5acc17",
"metadata": {},
"outputs": [],
"source": [
"vote_local = (votes\n",
" .filter(_[\"Jurisdiction Type\"] == \"Municipal\")\n",
" .rename(city = \"Jurisdiction Name\", state_id = \"State\")\n",
" .mutate(key = _.city + ibis.literal('-') + _.state_id)\n",
" .rename(amount = 'Conservation Funds at Stake', yes = '% Yes')\n",
" .mutate(amount_n=_.amount.replace('$', '').replace(',', '').cast('float'))\n",
" .mutate(log_amount=_.amount_n.log())\n",
" .mutate(year=_['Date'].year().cast('int32'))\n",
" .select('key', 'Status', 'yes', 'year', 'amount', 'log_amount', )\n",
" )\n",
"\n",
"df_local = (locality\n",
" .mutate(key = _.name + ibis.literal('-') + _.state_id)\n",
" .select('key', 'geometry')\n",
" .right_join(vote_local, \"key\")\n",
" .drop('key_right')\n",
" .mutate(jurisdiction = ibis.literal(\"Municipal\"))\n",
" .cast({\"geometry\": \"geometry\"})\n",
" \n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "a1e81807-8ce3-44bf-9a1c-8563fa33817c",
"metadata": {},
"outputs": [],
"source": [
"df = df_county.union(df_local)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e0402bc4-9b1b-4d31-8789-1970c34bcfa8",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "47d5f61e2fdc46328e233418e9b48d95",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FloatProgress(value=0.0, layout=Layout(width='auto'), style=ProgressStyle(bar_color='black'))"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"gdf = df.execute()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "2d0d5b70-2739-48e8-9ac6-789cb2f9f648",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['State',\n",
" 'Jurisdiction Name',\n",
" 'Jurisdiction Type',\n",
" 'Date',\n",
" 'Description',\n",
" 'Finance Mechanism',\n",
" '\"Other\" Comment',\n",
" 'Purpose',\n",
" 'Total Funds at Stake',\n",
" 'Conservation Funds at Stake',\n",
" 'Total Funds Approved',\n",
" 'Conservation Funds Approved',\n",
" 'Pass?',\n",
" 'Status',\n",
" '% Yes',\n",
" '% No',\n",
" 'Notes',\n",
" 'Voted Acq. Measure',\n",
" 'column18']"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"votes.drop(\"Total Funds )"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "5d3bee26-7ca8-490c-be5b-fc69a6c3db2a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
"Token is valid (permission: write).\n",
"Your token has been saved to /home/jovyan/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"import subprocess\n",
"import os\n",
"from huggingface_hub import HfApi, login\n",
"import streamlit as st\n",
"\n",
"login(st.secrets[\"HF_TOKEN\"])\n",
"# api = HfApi(add_to_git_credential=False)\n",
"api = HfApi()\n",
"\n",
"def hf_upload(file, repo_id):\n",
" info = api.upload_file(\n",
" path_or_fileobj=file,\n",
" path_in_repo=file,\n",
" repo_id=repo_id,\n",
" repo_type=\"dataset\",\n",
" )\n",
"def generate_pmtiles(input_file, output_file, max_zoom=12):\n",
" # Ensure Tippecanoe is installed\n",
" if subprocess.call([\"which\", \"tippecanoe\"], stdout=subprocess.DEVNULL) != 0:\n",
" raise RuntimeError(\"Tippecanoe is not installed or not in PATH\")\n",
"\n",
" # Construct the Tippecanoe command\n",
" command = [\n",
" \"tippecanoe\",\n",
" \"-o\", output_file,\n",
" \"-z\", str(max_zoom),\n",
" \"--drop-densest-as-needed\",\n",
" \"--extend-zooms-if-still-dropping\",\n",
" \"--force\",\n",
" input_file\n",
" ]\n",
"\n",
" # Run Tippecanoe\n",
" try:\n",
" subprocess.run(command, check=True)\n",
" print(f\"Successfully generated PMTiles file: {output_file}\")\n",
" except subprocess.CalledProcessError as e:\n",
" print(f\"Error running Tippecanoe: {e}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac91a627-70a8-4e60-b3ef-66e9c1e02762",
"metadata": {},
"outputs": [],
"source": [
"df.execute().to_file(\"vote.geojson\")\n",
"generate_pmtiles(\"vote.geojson\", \"vote.pmtiles\")\n",
"hf_upload(\"vote.pmtiles\", \"boettiger-lab/landvote\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "a3bde171-e7a8-4a5d-97ea-bfffdf26918b",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">DatabaseTable: ibis_read_geo_pamy33s53vaepploan6xzko2mu\n",
" key string\n",
" Status string\n",
" yes string\n",
" year int32\n",
" amount string\n",
" log_amount float64\n",
" jurisdiction string\n",
" geom geospatial:geometry\n",
"</pre>\n"
],
"text/plain": [
"DatabaseTable: ibis_read_geo_pamy33s53vaepploan6xzko2mu\n",
" key string\n",
" Status string\n",
" yes string\n",
" year int32\n",
" amount string\n",
" log_amount float64\n",
" jurisdiction string\n",
" geom geospatial:geometry"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import leafmap.maplibregl as leafmap\n",
"import geopandas\n",
"url = \"https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/vote.geojson\"\n",
"\n",
"conn.read_geo(url).filter\n",
"#gpf = geopandas.read_file(url, engine=\"pyogrio\")\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "58094159-4efc-4b56-a1d4-dac27be86924",
"metadata": {},
"outputs": [],
"source": [
"gpf.to_file(\"vote.geojson\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "221db74d-961c-4cac-a443-02b3d562b531",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"For layer 0, using name \"vote\"\n",
"vote.geojson:496: null geometry (additional not reported): in JSON object {\"type\":\"Feature\",\"properties\":{\"key\":null,\"Status\":\"Fail\",\"yes\":\"43.668463401297%\",\"year\":1990,\"amount\":null,\"log_amount\":null,\"jurisdiction\":\"County\"},\"geometry\":null}\n",
"2195 features, 10372266 bytes of geometry, 95306 bytes of string pool\n",
" 99.9% 12/1136/1649 \n",
" 100.0% 12/220/1795 \r"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully generated PMTiles file: vote.pmtiles\n"
]
}
],
"source": [
"generate_pmtiles(\"vote.geojson\", \"vote.pmtiles\")\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "23deeb8c-3ef9-4279-bd5f-7b72494ee567",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<Projected CRS: EPSG:3857>\n",
"Name: WGS 84 / Pseudo-Mercator\n",
"Axis Info [cartesian]:\n",
"- X[east]: Easting (metre)\n",
"- Y[north]: Northing (metre)\n",
"Area of Use:\n",
"- name: World between 85.06°S and 85.06°N.\n",
"- bounds: (-180.0, -85.06, 180.0, 85.06)\n",
"Coordinate Operation:\n",
"- name: Popular Visualisation Pseudo-Mercator\n",
"- method: Popular Visualisation Pseudo Mercator\n",
"Datum: World Geodetic System 1984 ensemble\n",
"- Ellipsoid: WGS 84\n",
"- Prime Meridian: Greenwich"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gdf = geopandas.read_file(\"vote.pmtiles\", engine=\"pyogrio\")\n",
"gdf.crs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa397626-6e94-4ab9-a3bb-2bcbd14e8d40",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import leafmap.maplibregl as leafmap\n",
"m = leafmap.Map(style=\"positron\")\n",
"\n",
"url = \"https://huggingface.co/datasets/boettiger-lab/landvote/resolve/main/vote.pmtiles\"\n",
"\n",
"#gdf = df.filter(_.year==1988).execute()\n",
"#gdf.to_file(\"vote.geojson\")\n",
"\n",
"outcome = [\n",
" 'match',\n",
" ['get', 'Status'], \n",
" \"Pass\", '#2E865F',\n",
" \"Fail\", '#FF3300', \n",
" '#ccc'\n",
" ]\n",
"paint = {\"fill-extrusion-color\": outcome, \n",
" \"fill-extrusion-opacity\": 0.7,\n",
" \"fill-extrusion-height\": [\"*\", [\"get\", \"log_amount\"], 5000],\n",
" }\n",
"style = {\n",
" \"layers\": [\n",
" {\n",
" \"id\": \"votes\",\n",
" \"source\": \"vote\",\n",
" \"source-layer\": \"vote\",\n",
" \"type\": \"fill-extrusion\",\n",
" \"filter\": [\n",
" \"==\",\n",
" [\"get\", \"year\"],\n",
" 1988,\n",
" ], # only show buildings with height info\n",
" \"paint\": paint\n",
" },\n",
" ],\n",
"}\n",
"\n",
"m.add_pmtiles(\n",
" url,\n",
" style=style,\n",
" visible=True,\n",
" opacity=1.0,\n",
" tooltip=True,\n",
" fit_bounds=False,\n",
")\n",
"#m.add_layer_control()\n",
"m\n",
"\n",
"\n",
"\n",
"#m.add_geojson(\"vote.geojson\", \"fill-extrusion\", paint = paint)\n",
"#m.add_gdf(gdf, \"fill-extrusion\", paint = paint)\n",
"#m"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e521f00-1b04-4016-9a6a-71a12e846dd3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|