Spaces:
Sleeping
Sleeping
File size: 22,284 Bytes
ba4e718 59b4a4b ba4e718 e6a4360 4078af3 ba4e718 9d71920 ba4e718 4078af3 b302357 ba4e718 59b4a4b e6a4360 ba4e718 9d71920 40f21cc ba4e718 40f21cc 9d71920 4078af3 9d71920 9d9a528 6560afd b338fe9 6560afd 9d9a528 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 9d9a528 6560afd e6a4360 6560afd 9d9a528 b338fe9 9d9a528 b338fe9 9d71920 4078af3 b338fe9 4078af3 6560afd 9d9a528 ba4e718 59b4a4b ba4e718 9d71920 40f21cc e6a4360 9d71920 40f21cc e6a4360 4078af3 2c93f68 9d71920 4078af3 9d71920 40f21cc 4078af3 b338fe9 ba4e718 b302357 ba4e718 40f21cc 2c93f68 40f21cc ba4e718 40f21cc ba4e718 40f21cc ba4e718 b302357 ba4e718 b302357 ba4e718 40f21cc ba4e718 40f21cc ba4e718 b338fe9 9d71920 ba4e718 b338fe9 ba4e718 e6a4360 b338fe9 e6a4360 ba4e718 40f21cc ba4e718 b338fe9 40f21cc b338fe9 9d71920 40f21cc 4078af3 9d71920 4078af3 40f21cc 4078af3 9d71920 4078af3 9d71920 4078af3 9d71920 4078af3 ba4e718 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 ba4e718 b338fe9 ba4e718 40f21cc ba4e718 9d71920 b338fe9 ba4e718 40f21cc ba4e718 b338fe9 40f21cc ba4e718 b338fe9 ba4e718 40f21cc ba4e718 b338fe9 ba4e718 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 b338fe9 ba4e718 b338fe9 ba4e718 e6a4360 b338fe9 e6a4360 b338fe9 e6a4360 ba4e718 b302357 e6a4360 b338fe9 e6a4360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import streamlit as st
import streamlit.components.v1 as components
import base64
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
from typing import Optional
def to_streamlit(
self,
width: Optional[int] = None,
height: Optional[int] = 600,
scrolling: Optional[bool] = False,
**kwargs,
):
try:
import streamlit.components.v1 as components
import base64
raw_html = self.to_html().encode("utf-8")
raw_html = base64.b64encode(raw_html).decode()
return components.iframe(
f"data:text/html;base64,{raw_html}",
width=width,
height=height,
scrolling=scrolling,
**kwargs,
)
except Exception as e:
raise Exception(e)
# ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca2024-30m-tippe.pmtiles"
# ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca2024-30m.parquet"
ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.pmtiles"
ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/cpad-stats.parquet"
ca_area_acres = 1.014e8 #acres
style_choice = "GAP Status Code"
con = ibis.duckdb.connect(extensions=["spatial"])
ca = (con
.read_parquet(ca_parquet)
.cast({"geom": "geometry"})
.cast({"crop_expansion": "int64"})
)
private_access_color = "#DE881E" # orange
public_access_color = "#3388ff" # blue
tribal_color = "#BF40BF" # purple
mixed_color = "#005a00" # green
year2023_color = "#26542C" # green
year2024_color = "#F3AB3D" # orange
federal_color = "#529642" # green
state_color = "#A1B03D" # light green
local_color = "#365591" # blue
special_color = "#529642" # brown
private_color = "#7A3F1A" # brown
joint_color = "#DAB0AE" # pink
county_color = "#BFD76B" # green
city_color = "#BDC368" #green
hoa_color = "#A89BBC" # purple
nonprofit_color = "#D77031" #orange
from functools import reduce
def get_summary(ca, combined_filter, column, colors=None):
df = ca.filter(combined_filter)
# if colors is not None and not colors.empty: # df used for chart.
# df = df.filter(_.reGAP <3) # only show gaps 1 and 2 for chart.
df = (df
.group_by(*column) # unpack the list for grouping
.aggregate(percent_protected=100 * _.Acres.sum() / ca_area_acres,
mean_richness = (_.richness * _.Acres).sum() / _.Acres.sum(),
mean_rsr = (_.rsr * _.Acres).sum() / _.Acres.sum(),
all_rsr = (_.all_species_rwr * _.Acres).sum() / _.Acres.sum(),
all_richness = (_.all_species_richness * _.Acres).sum() / _.Acres.sum(),
irrecoverable_carbon = (_.irrecoverable_carbon * _.Acres).sum() / _.Acres.sum(),
manageable_carbon = (_.manageable_carbon * _.Acres).sum() / _.Acres.sum(),
carbon_lost = (_.deforest_carbon * _.Acres).sum() / _.Acres.sum(),
human_impact = (_.human_impact * _.Acres).sum() / _.Acres.sum(),
svi = (_.svi * _.Acres).sum() / _.Acres.sum(),
svi_socioeconomic_status = (_.svi_socioeconomic_status * _.Acres).sum() / _.Acres.sum(),
svi_household_char = (_.svi_household_char * _.Acres).sum() / _.Acres.sum(),
svi_racial_ethnic_minority = (_.svi_racial_ethnic_minority * _.Acres).sum() / _.Acres.sum(),
svi_housing_transit = (_.svi_housing_transit * _.Acres).sum() / _.Acres.sum(),
# biodiversity_intactness_loss = (_.biodiversity_intactness_loss * _.Acres).sum() / _.Acres.sum(),
# crop_reduction = (_.crop_reduction * _.Acres).sum() / _.Acres.sum(),
# crop_expansion = (_.crop_expansion * _.Acres).sum() / _.Acres.sum(),
# forest_loss = (_.forest_integrity_loss * _.Acres).sum() / _.Acres.sum(),
)
.mutate(percent_protected=_.percent_protected.round(1))
)
if colors is not None and not colors.empty: #
df = df.inner_join(colors, column) # chart colors
df = df.cast({col: "string" for col in column})
df = df.to_pandas()
return df
def summary_table(column, colors, filter_cols, filter_vals,colorby_vals):
filters = []
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
if column not in filter_cols: #show color_by variable in table
filter_cols.append(column)
filters.append(getattr(_, column).isin(colorby_vals[column]))
combined_filter = reduce(lambda x, y: x & y, filters)
df = get_summary(ca, combined_filter, [column], colors) # df used for charts
df_tab = get_summary(ca, combined_filter, filter_cols, colors = None) #df used for printed table
return df, df_tab
def area_plot(df, column):
base = alt.Chart(df).encode(
alt.Theta("percent_protected:Q").stack(True),
)
pie = ( base
.mark_arc(innerRadius= 40, outerRadius=100)
.encode(alt.Color("color:N").scale(None).legend(None),
tooltip=['percent_protected', column])
)
text = ( base
.mark_text(radius=80, size=14, color="white")
.encode(text = column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=300)
def get_pmtiles_style(paint, alpha, cols, values):
filters = []
for col, val in zip(cols, values):
filter_condition = ["match", ["get", col], val, True, False]
filters.append(filter_condition)
combined_filter = ["all"] + filters
return {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [{
"id": "ca30x30",
"source": "ca",
"source-layer": "layer",
# "source-layer": "ca202430m",
# "source-layer": "ca2024",
"type": "fill",
"filter": combined_filter, # Use the combined filter
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}]
}
def bar_chart(df, x, y):
chart = alt.Chart(df).mark_bar().encode(
x=x,
y=y,
color=alt.Color('color').scale(None)
).properties(width="container", height=300)
return chart
def getButtons(style_options, style_choice, default_gap=None):
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_gap = default_gap or {}
buttons = {
name: st.checkbox(f"{name}", value=default_gap.get(name, False), key=column + str(name))
for name in opts
}
filter_choice = [key for key, value in buttons.items() if value] # return only selected
d = {}
d[column] = filter_choice
return d
default_gap = {
1: True,
2: True,
}
def getColorVals(style_options, style_choice): #adding "color by" values to table
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
d = {}
d[column] = opts
return d
manager = {
'property': 'manager_type',
'type': 'categorical',
'stops': [
['Federal', federal_color],
['State', state_color],
['Non Profit', nonprofit_color],
['Special District', special_color],
['Unknown', "grey"],
['County', county_color],
['City', city_color],
['Joint', joint_color],
['Tribal', tribal_color],
['Private', private_color],
['Home Owners Association', hoa_color]
]
}
easement = {
'property': 'Easement',
'type': 'categorical',
'stops': [
[0, public_access_color],
[1, private_access_color]
]
}
year = {
'property': 'established',
'type': 'categorical',
'stops': [
[2023, year2023_color],
[2024, year2024_color]
]
}
access = {
'property': 'access_type',
'type': 'categorical',
'stops': [
['Open Access', public_access_color],
['No Public Access', private_access_color],
['Unknown Access', "grey"],
['Restricted Access', tribal_color]
]
}
gap = {
'property': 'reGAP',
'type': 'categorical',
'stops': [
[1, "#26633d"],
[2, "#879647"],
[3, "#BBBBBB"],
[4, "#F8F8F8"]
]
}
# area_type = {
# 'property': 'type',
# 'type': 'categorical',
# 'stops': [
# ["Land", "green"],
# ["Water", "blue"]
# ]
# }
style_options = {
"Year": year,
"GAP Status Code": gap,
"Manager Type": manager,
"Easement": easement,
"Public Access": access,
# "Type": area_type
}
justice40 = "https://data.source.coop/cboettig/justice40/disadvantaged-communities.pmtiles"
justice40_fill = {
'property': 'Disadvan',
'type': 'categorical',
'stops': [
[0, "rgba(255, 255, 255, 0)"],
[1, "rgba(0, 0, 139, 1)"]]}
justice40_style = {
"version": 8,
"sources": {
"source1": {
"type": "vector",
"url": "pmtiles://" + justice40,
"attribution": "Justice40"}
},
"layers": [{
"id": "layer1",
"source": "source1",
"source-layer": "DisadvantagedCommunitiesCEJST",
"filter": ["match", ["get", "StateName"], "California", True, False],
"type": "fill",
"paint": {"fill-color": justice40_fill, "fill-opacity": 0.6}}]
}
sv_pmtiles = "https://data.source.coop/cboettig/social-vulnerability/svi2020_us_county.pmtiles"
def get_sv_style(column):
return {
"layers": [
{
"id": "SVI",
"source": "Social Vulnerability Index",
"source-layer": "SVI2020_US_county",
"filter": ["match", ["get", "STATE"], "California", True, False],
"type": "fill",
"paint": {
"fill-color":
["interpolate", ["linear"], ["get", column],
0, "#FFE6EE",
1, "#850101"]
}
}
]
}
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:")
'''
# CA 30X30 Prototype
'''
m = leafmap.Map(style="positron")
filters = {}
with st.sidebar:
color_choice = st.radio("Color by:", style_options)
colorby_vals = getColorVals(style_options, color_choice)
alpha = st.slider("transparency", 0.0, 1.0, 0.5)
st.divider()
"Filters:"
for label in style_options:
with st.expander(label):
if label == "GAP Status Code": # gap code 1 and 2 are on by default
opts = getButtons(style_options, label, default_gap)
else:
opts = getButtons(style_options, label)
filters.update(opts)
selected = {k: v for k, v in filters.items() if v} #get selected filters
if selected:
filter_cols = list(selected.keys())
filter_vals = list(selected.values())
else:
filter_cols = []
filter_vals = []
style = get_pmtiles_style(style_options[color_choice], alpha, filter_cols, filter_vals)
m.add_pmtiles(ca_pmtiles, style=style, visible=True, name="CA", opacity=alpha, tooltip=True)
st.divider()
"Data Layers:"
with st.expander("π¦ Biodiversity"):
alpha_bio = st.slider("transparency", 0.0, 1.0, 0.4, key = "biodiversity")
show_richness = st.toggle("Species Richness", False)
if show_richness:
m.add_tile_layer(
url = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/species-richness-ca/{z}/{x}/{y}.png",
name="MOBI Species Richness",
opacity=alpha_bio
)
show_rsr = st.toggle("Range-Size Rarity")
if show_rsr:
m.add_tile_layer(
url="https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/range-size-rarity/{z}/{x}/{y}.png",
name="MOBI Range-Size Rarity",
opacity=alpha_bio)
with st.expander("β
Carbon & Climate"):
alpha_climate = st.slider("transparency", 0.0, 1.0, 0.3, key = "climate")
show_irrecoverable_carbon = st.toggle("Irrecoverable Carbon")
if show_irrecoverable_carbon:
m.add_cog_layer("https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_irrecoverable_c_2018_cog.tif",
palette="reds", name="Irrecoverable Carbon", transparent_bg=True, opacity = alpha_climate, fit_bounds=False, bidx=[1])
show_manageable_carbon = st.toggle("Manageable Carbon")
if show_manageable_carbon:
m.add_cog_layer("https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_manageable_c_2018_cog.tif",
palette="purples", name="Manageable Carbon", transparent_bg=True, opacity = alpha_climate, fit_bounds=False)
with st.expander("Climate and Economic Justice"):
alpha_justice40 = st.slider("transparency", 0.0, 1.0, 0.3, key = "social justice")
show_justice40 = st.toggle("Justice40")
if show_justice40:
m.add_pmtiles(justice40, style=justice40_style, visible=True, name="Justice40", opacity=alpha_justice40, tooltip=False, fit_bounds = False)
with st.expander("Social Vulnerability"):
alpha_justice = st.slider("transparency", 0.0, 1.0, 0.3, key = "SVI")
show_sv = st.toggle("Social Vulnerability Index (SVI)")
if show_sv:
m.add_pmtiles(sv_pmtiles, style = get_sv_style("RPL_THEMES") ,visible=True, opacity=alpha_justice, tooltip=False, fit_bounds = False)
show_sv_socio = st.toggle("Socioeconomic Status")
if show_sv_socio:
m.add_pmtiles(sv_pmtiles, style = get_sv_style("RPL_THEME1") ,visible=True, opacity=alpha_justice, tooltip=False, fit_bounds = False)
show_sv_household = st.toggle("Household Characteristics")
if show_sv_household:
m.add_pmtiles(sv_pmtiles, style = get_sv_style("RPL_THEME2") ,visible=True, opacity=alpha_justice, tooltip=False, fit_bounds = False)
show_sv_minority = st.toggle("Racial & Ethnic Minority Status")
if show_sv_minority:
m.add_pmtiles(sv_pmtiles, style = get_sv_style("RPL_THEME3") ,visible=True, opacity=alpha_justice, tooltip=False, fit_bounds = False)
show_sv_housing = st.toggle("Housing Type & Transportation")
if show_sv_housing:
m.add_pmtiles(sv_pmtiles, style = get_sv_style("RPL_THEME4") ,visible=True, opacity=alpha_justice, tooltip=False, fit_bounds = False)
with st.expander("π Human Impacts"):
alpha_hi = st.slider("transparency", 0.0, 1.0, 0.5, key = "hi")
show_carbon_lost = st.toggle("Carbon Lost (2002-2022)")
if show_carbon_lost:
m.add_tile_layer(
url="https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/deforest-carbon-ca/{z}/{x}/{y}.png",
name="Carbon Lost (2002-2022)",
opacity = alpha_hi)
show_human_impact = st.toggle("Human Impact")
if show_human_impact:
m.add_cog_layer(
url = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca_human_impact_cog.tif", name="Human Impact", transparent_bg=True, opacity = alpha_hi, fit_bounds=False)
select_column = {
"Year": "established",
"GAP Status Code": "reGAP",
"Manager Type": "manager_type",
"Easement": "Easement",
"Public Access": "access_type",
# "Type": "type",
}
column = select_column[color_choice]
select_colors = {
"Year": year["stops"],
"GAP Status Code": gap["stops"],
"Manager Type": manager["stops"],
"Easement": easement["stops"],
"Public Access": access["stops"],
# "Type": area_type["stops"]
}
colors = (ibis
.memtable(select_colors[color_choice], columns = [column, "color"])
.to_pandas()
)
main = st.container()
df,df_tab = summary_table(column, colors, filter_cols, filter_vals, colorby_vals)
with main:
map_col, stats_col = st.columns([2,1])
with map_col:
to_streamlit(m, height=700)
st.dataframe(df_tab, use_container_width = True)
svi = bar_chart(df, column, 'svi')
svi_socioeconomic_status = bar_chart(df, column, 'svi_socioeconomic_status')
svi_household_char = bar_chart(df, column, 'svi_household_char')
svi_racial_ethnic_minority = bar_chart(df, column, 'svi_racial_ethnic_minority')
svi_housing_transit = bar_chart(df, column, 'svi_housing_transit')
richness_chart = bar_chart(df, column, 'mean_richness')
rsr_chart = bar_chart(df, column, 'mean_rsr')
# all_rsr = bar_chart(df, column, 'all_rsr')
# all_richness = bar_chart(df, column, 'all_richness')
irrecoverable_carbon = bar_chart(df, column, 'irrecoverable_carbon')
manageable_carbon = bar_chart(df, column, 'manageable_carbon')
carbon_lost = bar_chart(df, column, 'carbon_lost')
human_impact = bar_chart(df, column, 'human_impact')
# crop_expansion = bar_chart(df, column, 'crop_expansion')
# biodiversity_intactness_loss = bar_chart(df, column, biodiversity_intactness_loss')
# crop_reduction = bar_chart(df, column, 'crop_reduction')
# forest_loss = bar_chart(df, column, 'forest_loss')
total_percent = df.percent_protected.sum().round(1)
with stats_col:
with st.container():
f"{total_percent}% CA Covered"
st.altair_chart(area_plot(df, column), use_container_width=True)
with st.container():
if show_richness:
"Species Richness"
st.altair_chart(richness_chart, use_container_width=True)
if show_rsr:
"Range-Size Rarity"
st.altair_chart(rsr_chart, use_container_width=True)
if show_irrecoverable_carbon:
"Irrecoverable Carbon"
st.altair_chart(irrecoverable_carbon, use_container_width=True)
if show_manageable_carbon:
"Manageable Carbon"
st.altair_chart(manageable_carbon, use_container_width=True)
if show_sv:
"Social Vulnerability Index"
st.altair_chart(svi, use_container_width=True)
if show_sv_socio:
"SVI - Socioeconomic Status"
st.altair_chart(svi_socioeconomic_status, use_container_width=True)
if show_sv_household:
"SVI - Household Characteristics"
st.altair_chart(svi_household_char, use_container_width=True)
if show_sv_minority:
"SVI - Racial and Ethnic Minority"
st.altair_chart(svi_racial_ethnic_minority, use_container_width=True)
if show_sv_housing:
"SVI - Housing Type and Transit"
st.altair_chart(svi_housing_transit, use_container_width=True)
if show_carbon_lost:
"Carbon Lost ('02-'22)"
st.altair_chart(carbon_lost, use_container_width=True)
if show_human_impact:
"Human Impact"
st.altair_chart(human_impact, use_container_width=True)
st.divider()
footer = st.container()
'''
## Credits
Authors: Cassie Buhler & Carl Boettiger, UC Berkeley
License: BSD-2-clause
### Data sources
- California Protected Areas Database by CA Nature. Data: https://www.californianature.ca.gov/datasets/CAnature::30x30-conserved-areas-terrestrial-2024/about. License: Public Domain
- Climate and Economic Justice Screening Tool, US Council on Environmental Quality, Justice40, data: https://beta.source.coop/repositories/cboettig/justice40/description/, License: Public Domain
- CDC 2020 Social Vulnerability Index by US Census Track. Data: https://source.coop/repositories/cboettig/social-vulnerability/description. License: Public Domain
- Imperiled Species Richness and Range-Size-Rarity from NatureServe (2022). Data: https://beta.source.coop/repositories/cboettig/mobi. License CC-BY-NC-ND
- Carbon-loss and farming impact by Vizzuality, on https://beta.source.coop/repositories/vizzuality/lg-land-carbon-data. Citation: https://doi.org/10.1101/2023.11.01.565036, License: CC-BY
- Human Footprint by Vizzuality, on https://beta.source.coop/repositories/vizzuality/hfp-100. Citation: https://doi.org/10.3389/frsen.2023.1130896, License: Public Domain
- Irrecoverable Carbon from Conservation International, reprocessed to COG on https://beta.source.coop/cboettig/carbon, citation: https://doi.org/10.1038/s41893-021-00803-6, License: CC-BY-NC
'''
|