Spaces:
Running
Running
File size: 9,063 Bytes
ba4e718 59b4a4b ba4e718 4078af3 ba4e718 9d71920 ba4e718 4078af3 b302357 ba4e718 59b4a4b ba4e718 9d71920 ba4e718 9d71920 40f21cc ba4e718 40f21cc 9d71920 4078af3 9d71920 4078af3 9d71920 4078af3 9d71920 4078af3 9d71920 4078af3 9d71920 ba4e718 4078af3 ba4e718 4078af3 ba4e718 4078af3 ba4e718 9d71920 ba4e718 59b4a4b ba4e718 9d71920 40f21cc 4078af3 9d71920 40f21cc 4078af3 2c93f68 9d71920 4078af3 9d71920 40f21cc 4078af3 ba4e718 b302357 ba4e718 40f21cc 2c93f68 40f21cc ba4e718 40f21cc ba4e718 40f21cc ba4e718 b302357 ba4e718 b302357 ba4e718 40f21cc ba4e718 40f21cc ba4e718 9d71920 ba4e718 40f21cc ba4e718 9d71920 ba4e718 40f21cc ba4e718 40f21cc 9d71920 40f21cc 4078af3 9d71920 4078af3 40f21cc 4078af3 9d71920 4078af3 9d71920 4078af3 9d71920 4078af3 ba4e718 40f21cc ba4e718 b302357 9d71920 ba4e718 40f21cc ba4e718 40f21cc ba4e718 9d71920 ba4e718 40f21cc ba4e718 4078af3 ba4e718 b302357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import streamlit as st
import streamlit.components.v1 as components
import base64
import leafmap.maplibregl as leafmap
import altair as alt
import ibis
from ibis import _
import ibis.selectors as s
from typing import Optional
def to_streamlit(
self,
width: Optional[int] = None,
height: Optional[int] = 600,
scrolling: Optional[bool] = False,
**kwargs,
):
try:
import streamlit.components.v1 as components
import base64
raw_html = self.to_html().encode("utf-8")
raw_html = base64.b64encode(raw_html).decode()
return components.iframe(
f"data:text/html;base64,{raw_html}",
width=width,
height=height,
scrolling=scrolling,
**kwargs,
)
except Exception as e:
raise Exception(e)
ca_pmtiles = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca2024-30m-tippe.pmtiles"
ca_parquet = "https://huggingface.co/datasets/boettiger-lab/ca-30x30/resolve/main/ca2024-30m.parquet"
ca_area_acres = 1.014e8 #acres
style_choice = "GAP Status Code"
con = ibis.duckdb.connect(extensions=["spatial"])
ca = (con
.read_parquet(ca_parquet)
.cast({"geom": "geometry"})
)
private_access_color = "#DE881E" # orange
public_access_color = "#3388ff" # blue
tribal_color = "#BF40BF" # purple
mixed_color = "#005a00" # green
year2023_color = "#26542C" # green
year2024_color = "#F3AB3D" # orange
federal_color = "#529642" # green
state_color = "#A1B03D" # light green
local_color = "#365591" # blue
special_color = "#529642" # brown
private_color = "#7A3F1A" # brown
joint_color = "#DAB0AE" # pink
county_color = "#BFD76B" # green
city_color = "#BDC368" #green
hoa_color = "#A89BBC" # purple
nonprofit_color = "#D77031" #orange
from functools import reduce
def summary_table(column, colors, filter_cols, filter_vals):
filters = [_.reGAP < 3] #only compute with gap codes 1 and 2
if filter_cols and filter_vals: #if a filter is selected, add to list of filters
for filter_col, filter_val in zip(filter_cols, filter_vals):
if len(filter_val) > 1:
filters.append(getattr(_, filter_col).isin(filter_val))
else:
filters.append(getattr(_, filter_col) == filter_val[0])
combined_filter = reduce(lambda x, y: x & y, filters)
df = (ca
.filter(combined_filter)
.group_by(column)
.aggregate(percent_protected=100 * _.Acres.sum() / ca_area_acres)
.mutate(percent_protected=_.percent_protected.round(1))
.inner_join(colors, column)
)
df = df.to_pandas()
df[column] = df[column].astype(str)
return df
def area_plot(df, column):
base = alt.Chart(df).encode(
alt.Theta("percent_protected:Q").stack(True),
)
pie = ( base
.mark_arc(innerRadius= 40, outerRadius=100)
.encode(alt.Color("color:N").scale(None).legend(None),
tooltip=['percent_protected', column])
)
text = ( base
.mark_text(radius=80, size=14, color="white")
.encode(text = column + ":N")
)
plot = pie # pie + text
return plot.properties(width="container", height=300)
def get_pmtiles_style(paint, alpha, cols, values):
filters = []
for col, val in zip(cols, values):
filter_condition = ["match", ["get", col], val, True, False]
filters.append(filter_condition)
combined_filter = ["all"] + filters
return {
"version": 8,
"sources": {
"ca": {
"type": "vector",
"url": "pmtiles://" + ca_pmtiles,
}
},
"layers": [{
"id": "ca30x30",
"source": "ca",
"source-layer": "ca202430m",
# "source-layer": "ca2024",
"type": "fill",
"filter": combined_filter, # Use the combined filter
"paint": {
"fill-color": paint,
"fill-opacity": alpha
}
}]
}
def getButtons(style_options, style_choice, default_gap=None):
column = style_options[style_choice]['property']
opts = [style[0] for style in style_options[style_choice]['stops']]
default_gap = default_gap or {}
buttons = {
name: st.checkbox(f"{name}", value=default_gap.get(name, False), key=column + str(name))
for name in opts
}
filter_choice = [key for key, value in buttons.items() if value] # return only selected
d = {}
d[column] = filter_choice
return d
default_gap = {
1: True,
2: True,
}
manager = {
'property': 'manager_type',
'type': 'categorical',
'stops': [
['Federal', federal_color],
['State', state_color],
['Non Profit', nonprofit_color],
['Special District', special_color],
['Unknown', "grey"],
['County', county_color],
['City', city_color],
['Joint', joint_color],
['Tribal', tribal_color],
['Private', private_color],
['Home Owners Association', hoa_color]
]
}
easement = {
'property': 'Easement',
'type': 'categorical',
'stops': [
[0, public_access_color],
[1, private_access_color]
]
}
year = {
'property': 'established',
'type': 'categorical',
'stops': [
[2023, year2023_color],
[2024, year2024_color]
]
}
access = {
'property': 'access_type',
'type': 'categorical',
'stops': [
['Open Access', public_access_color],
['No Public Access', private_access_color],
['Unknown Access', "grey"],
['Restricted Access', tribal_color]
]
}
gap = {
'property': 'reGAP',
'type': 'categorical',
'stops': [
[1, "#26633d"],
[2, "#879647"],
[3, "#BBBBBB"],
[4, "#F8F8F8"]
]
}
area_type = {
'property': 'type',
'type': 'categorical',
'stops': [
["Land", "green"],
["Water", "blue"]
]
}
style_options = {
"GAP Status Code": gap,
"Manager Type": manager,
"Easement": easement,
"Public Access": access,
"Year": year,
"Type": area_type
}
st.set_page_config(layout="wide", page_title="CA Protected Areas Explorer", page_icon=":globe:")
'''
# CA 30X30 Prototype
'''
m = leafmap.Map(style="positron")
filters = {}
with st.sidebar:
color_choice = st.radio("Color by:", style_options)
alpha = st.slider("transparency", 0.0, 1.0, 0.5)
# st.text("Filters:")
"Filters:"
for label in style_options:
with st.expander(label):
if label == "GAP Status Code": # gap code 1 and 2 are on by default
opts = getButtons(style_options, label, default_gap)
else:
opts = getButtons(style_options, label)
filters.update(opts)
selected = {k: v for k, v in filters.items() if v} #get selected filters
if selected:
filter_cols = list(selected.keys())
filter_vals = list(selected.values())
else:
filter_cols = []
filter_vals = []
style = get_pmtiles_style(style_options[color_choice], alpha, filter_cols, filter_vals)
m.add_pmtiles(ca_pmtiles, style=style, visible=True, name="CA", opacity=alpha, tooltip=True)
select_column = {
"GAP Status Code": "reGAP",
"Manager Type": "manager_type",
"Easement": "Easement",
"Year": "established",
"Public Access": "access_type",
"Type": "type"}
column = select_column[color_choice]
select_colors = {
"Manager Type": manager["stops"],
"Easement": easement["stops"],
"Public Access": access["stops"],
"Year": year["stops"],
"GAP Status Code": gap["stops"],
"Type": area_type["stops"]}
colors = (ibis
.memtable(select_colors[color_choice], columns = [column, "color"])
.to_pandas()
)
main = st.container()
with main:
map_col, stats_col = st.columns([2,1])
with map_col:
to_streamlit(m, height=700)
df = summary_table(column, colors, filter_cols, filter_vals)
total_percent = df.percent_protected.sum().round(1)
with stats_col:
with st.container():
f"{total_percent}% CA Covered"
st.altair_chart(area_plot(df, column), use_container_width=True)
st.divider()
footer = st.container()
|