Spaces:
Sleeping
Sleeping
File size: 16,154 Bytes
cfe22b9 a9921fb cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 f8ab42f cfe22b9 a9921fb cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 c8240ef 1a282bd c8240ef 1a282bd c8240ef 1a282bd c8240ef 1a282bd c8240ef cfe22b9 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 f8ab42f 5933e78 cfe22b9 5933e78 cfe22b9 5933e78 9767170 cfe22b9 b1efdbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
import os
import duckdb
import groq
import sqlparse
import json
from typing import Dict, Any, List
import pandas as pd
from pathlib import Path
import gradio as gr
import shutil
from dotenv import load_dotenv
load_dotenv()
userdata = os.environ
def chat_with_groq(client:groq.Groq,
prompt:str,
model:str,
response_format: Dict[str, str]
)-> Any:
"""
The function here works for the prompting the model for the qroq based model with natural language to
geegnrate the appropriate SQL query for the provided data and prompt. So with this output, can then be used to create proper
SQL queries and aggregation
Args:
client: This represents the Groq client which will be used top perform the conversion of the natural language to SQL.
prompt: Bases on the user message provided, the prompt will then be converted to SQL for future use for the data querying.
model: The Model here represents the based open source model that is used to make the query on. examples include llama3-70b-8192 or llama3-8b-8192 find out more here https://console.groq.com/docs/models
response_format: As model has the possibility of supporting JSON and MD outputs, this is a dictionary which specifies the the required return response format. by default this for the model is usually targetted
to returning an MD data but in the case of NL2SQL, then we coule work with SQL
Returns:
the function returns some data based on the response_format response form the model's response
"""
completion = client.chat.completions.create(
model = model,
temperature = 0,
messages = [
{
"role":"user",
"content":prompt
}
],
response_format=response_format
)
# logger.info(f"Completion: {completion}")
return completion.choices[0].message.content
def execute_duckdb_query(query:str)->pd.DataFrame:
"""
Execute a DuckDB query and return the result as a pandas DataFrame.
Args:
query (str): The DuckDB query to execute.
Returns:
pd.DataFrame: The result of the query as a pandas DataFrame.
"""
original_cwd = os.getcwd()
print(f"PATH:{original_cwd}")
os.chdir('data')
print(f"PATH:{os.getcwd()}")
try:
conn = duckdb.connect(database=":memory:", read_only=False)
query_result = conn.execute(query).fetch_df().reset_index()
os.chdir(original_cwd)
return query_result
except Exception as e:
print(f"Error: {e}")
os.chdir(original_cwd)
raise e
def get_summarization(client:groq.Groq,
use_question:str,
df:pd.DataFrame,
model:str)->Any:
"""
For this query, the user input is better summarized around the provided Dataframe. This give a better contextual structure for the user to perfom the action
Args:
client: This represents the Groq client which will be used top perform the conversion of the natural language to SQL.
use_question: Bases on the user message provided, the prompt will then be converted to SQL for future use for the data querying.
model: The Model here represents the based open source model that is used to make the query on. examples include llama3-70b-8192 or llama3-8b-8192 find out more here https://console.groq.com/docs/models
df: this is a pandas dataframe which containe the database daat which will then be used to summarize the base query around it, making the prompt more realistic.
Returns:
the function returns some json response form the model's response
"""
prompt= '''
A user asked the following question pertaining to local database tables:
{user_question}
To answer the question, a dataframe was returned:
Dataframe:
{df}
In a few sentences, summarize the data in the table as it pertains to the original user question. Avoid qualifiers like "based on the data" and do not comment on the structure or metadata of the table itself
'''.format(user_question = use_question, df = df)
return chat_with_groq(client,prompt,model,None)
import re
from datetime import datetime
import numpy as np
def identify_value_datatype_to_SQL_DEF(value) -> str:
pattern_yyyy_mm_dd = r'^\d{4}-\d{2}-\d{2}$'
pattern_mm_dd_yyyy = r'^\d{2}/\d{2}/\d{4}$'
pattern_dd_mm_yyyy = r'^\d{2}-\d{2}-\d{4}$'
if pd.isna(value):
return 'VARCHAR(255)'
if isinstance(value, (int, np.int64)):
return 'INTEGER'
elif isinstance(value, (float, np.float64)):
return 'FLOAT'
elif isinstance(value, bool):
return 'BOOLEAN'
elif isinstance(value, (pd.Timestamp, datetime)):
return 'DATETIME'
elif isinstance(value, str):
if re.match(pattern_yyyy_mm_dd, value) or re.match(pattern_mm_dd_yyyy, value) or re.match(pattern_dd_mm_yyyy, value):
return 'DATE'
try:
pd.to_datetime(value)
return 'DATETIME'
except ValueError:
pass
elif isinstance(value, list):
if all(isinstance(item, (int, np.int64)) for item in value):
return 'ARRAY<INTEGER>'
elif all(isinstance(item, str) for item in value):
return 'ARRAY<VARCHAR(255)>'
elif isinstance(value, dict):
return 'JSON'
elif isinstance(value, (str, bytes)):
if value.startswith('POINT'):
return 'GEOMETRY(POINT)'
elif value.startswith('LINESTRING'):
return 'GEOMETRY(LINESTRING)'
elif value.startswith('POLYGON'):
return 'GEOMETRY(POLYGON)'
return 'VARCHAR(255)'
def identify_column_datatypes_to_SQL_DEF(df: pd.DataFrame,
api_key:str,
model:str
) -> dict:
column_types = []
for column in df.columns:
# Get non-null values
non_null_values = df[column].dropna()
if len(non_null_values) > 0:
# Use the first non-null value to determine the type
sample_value = non_null_values.iloc[0]
column_types.append(f"{column} - {identify_value_datatype_to_SQL_DEF(sample_value)}")
else:
# If all values are null, default to VARCHAR
column_types.append(f"{column} - VARCHAR(255)")
column_datatypes= "\n".join(element for element in column_types)
client = groq.Groq(api_key=api_key,)
full_prompt = """
You are a Database Query Advisor. Your task is to provide descriptions for given columns and their datatypes.
Input Data:
{columns}
Instructions:
1. Respond with a valid JSON document.
2. For each column, provide a description and its datatype in this format:
{{"column_name": {{"description": "<description here>", "dtype": "<datatype here>"}}}}
3. If the data provided is invalid or insufficient, respond with:
{{"error": "<explanation of the issue>"}}
4. Ensure each column name is directly associated with its description and datatype.
5. Return the entire output on a single line without line breaks.
6. Keep your response simple and straightforward; avoid complex structures.
Example Output:
{{"column1": {{"description": "Unique identifier for each record", "dtype": "INTEGER"}}, "column2": {{"description": "Name of the product", "dtype": "VARCHAR(255)"}}}}
Remember: Your entire response must be valid JSON and on a single line.
""".format(columns=column_datatypes)
response = chat_with_groq(client,full_prompt,model,{
"type":"json_object"
})
print(f"OUTPUT:{response}")
response = json.loads(response)
formatted_data = {
f" {column} - {response[column]['dtype']}": response[column]['description']
for column in response
}
return " \n".join(f"{key}: {value}" for key, value in formatted_data.items())
def join_with_and(items):
if not items:
return ""
if len(items) == 1:
return items[0]
return ', '.join(items[:-1]) + ' and ' + items[-1]
import os
from pathlib import Path
from typing import List
base_prompt = """
You are Groq Advisor, and you are tasked with generating SQL queries for DuckDB based on user questions about data stored in two tables derived from CSV files:
{table_description}
Given a user's question about this data, write a valid DuckDB SQL query that accurately extracts or calculates the requested information from these tables and adheres to SQL best practices for DuckDB, optimizing for readability and performance where applicable.
Make sure that you do not query a tables that does not exist. Ensure that a query provided comes from the tables provided.
When asked about quantitative values, ensure that you look at the numerical data types and not the string data types such as when asked about top purchase, the amount can be a field to be looked at.
When queries about id, ensure that the relevant field in the data which represents an id is looked at and queried.
Here are some tips for writing DuckDB queries:
* DuckDB syntax requires querying from the .csv file itself, i.e. {tables}. For example: SELECT * FROM sample.csv as sample
* Because we are using .csv file always make sure the .csv is attached to the file being queried
* All tables referenced MUST be aliased
* DuckDB does not implicitly include a GROUP BY clause
* CURRENT_DATE gets today's date
* Aggregated fields like COUNT(*) must be appropriately named
Question:
--------
{user_question}
--------
Reminder: Generate a DuckDB SQL to answer to the question:
* respond as a valid JSON Document
* [Best] If the question can be answered with the available tables: {{"sql": <sql here>}}
* If the question cannot be answered with the available tables: {{"error": <explanation here>}}
* Ensure that the entire output is returned on only one single line
* Keep your query as simple and straightforward as possible; do not use subqueries
"""
table_description = """"""
tables_string = """"""
table_1 = """"""
table_1_wt_xt = """"""
user_question = """"""
# And some rules for querying the dataset:
# * Never include employee_id in the output - show employee name instead
# Also note that:
# * Valid values for product_name include 'Tesla','iPhone' and 'Humane pin'
def upload_file(files) -> List[str]:
# will have to change to the private system is initiializes
model = "llama3-8b-8192"
api_key:str=userdata.get("GROQ_API_KEY")
data_dir = Path("data")
data_dir.mkdir(parents=True, exist_ok=True)
if type(files) == str:
files = [files]
stored_paths = []
stored_table_descriptions = []
tables = []
for file in files:
filename = Path(file.name).name
path = data_dir / filename
# Copy the content of the temporary file to our destination
with open(file.name, "rb") as source, open(path, "wb") as destination:
destination.write(source.read())
stored_paths.append(str(path.absolute()))
table_description = identify_column_datatypes_to_SQL_DEF(pd.read_csv(path),api_key,model)
desc = "Table: " + filename + "\n Columns:\n" + table_description
stored_table_descriptions.append(desc)
tables.append(filename)
# constructing a string
tables_string = join_with_and(tables)
final = "\n".join(stored_table_descriptions)
table_1_wt_xt = tables[0].split('.')[0]
table_description = final
tables_string = tables_string
table_1 = tables[0]
table_1_wt_xt = table_1_wt_xt
return final
def user_prompt_sanitization(user_prompt:str)->str:
guide = """
You are an AI assistant specializing in database queries. Your task is to interpret user questions about a database and refine them based on the available table structures. Use the following table descriptions to guide your responses:
Database Schema:
{database_schema}
Instructions:
1. Interpret the user's question and identify the relevant tables and columns.
2. Refine the query to use correct table and column names as per the schema.
3. Ensure all IDs are properly referenced (e.g., user_id instead of just id).
4. For quantitative queries (e.g., "top 5"), specify the ordering criteria.
5. Infer necessary joins between tables when the query spans multiple tables.
6. Provide a clear, concise refinement of the user's query that accurately reflects the database structure.
Now, please refine the following user query:
{user_question}
"""
formatted_guide = guide.format(database_schema=table_description,user_question=user_prompt)
api_key:str=userdata.get("GROQ_API_KEY")
client = groq.Groq(api_key=api_key)
return chat_with_groq(client,formatted_guide,"llama3-70b-8192",None)
def queryModel(user_prompt:str,model:str = "llama3-70b-8192",api_key:str=userdata.get("GROQ_API_KEY")):
client = groq.Groq(api_key=api_key)
user_prompt = user_prompt_sanitization(user_prompt)
print(user_prompt)
full_prompt = base_prompt.format(
user_question=user_prompt,
table_description=table_description,
tables=tables_string,
table_1=table_1,
table_1_wt_xt=table_1_wt_xt
)
try:
response = chat_with_groq(client,full_prompt,model,{
"type":"json_object"
})
except Exception as e:
return [(
"Groq Advisor",
"Error: " + str(e)
)]
response = json.loads(response)
if "sql" in response:
sql_query = response["sql"]
try:
results_df = execute_duckdb_query(sql_query)
except Exception as e:
return [(
"Groq Advisor",
"Error: " + str(e)
)]
fotmatted_sql_query = sqlparse.format(sql_query, reindent=True, keyword_case='upper')
# print(f"SQL Query: {fotmatted_sql_query}")
# print(results_df.to_markdown())
query_n_results = "SQL Query: " + fotmatted_sql_query + "\n\n" + results_df.to_markdown()
summarization = get_summarization(client,user_prompt,results_df,model)
query_n_results += "\n\n" + summarization
return [(
"Groq Advisor",
query_n_results
)]
elif "error" in response:
return [(
"Groq Advisor",
"Error: " + response["error"]
)]
else:
return [(
"Groq Advisor",
"Error: Unknown error"
)]
with gr.Blocks() as demo:
gr.Markdown("# CSV Database Query Interface")
with gr.Tab("Upload CSV"):
file_output = gr.File(file_count="multiple", label="Upload your CSV files")
upload_button = gr.Button("Load CSV Files")
upload_output = gr.Textbox(label="Upload Status", lines=5)
upload_button.click(upload_file, inputs=file_output, outputs=upload_output)
with gr.Tab("Query Interface"):
chatbot = gr.Chatbot()
with gr.Row():
user_input = gr.Textbox(label="Enter your question")
submit_button = gr.Button("Submit")
submit_button.click(queryModel, inputs=[user_input], outputs=chatbot)
demo.launch(
share=True
)
|