blesspearl commited on
Commit
f8ab42f
·
verified ·
1 Parent(s): 5933e78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -100,7 +100,7 @@ def get_summarization(client:groq.Groq,
100
  '''.format(user_question = use_question, df = df)
101
  return chat_with_groq(client,prompt,model,None)
102
 
103
- import pandas as pd
104
  import re
105
  from datetime import datetime
106
  import numpy as np
@@ -307,15 +307,15 @@ def upload_file(files) -> List[str]:
307
 
308
  def user_prompt_sanitization(user_prompt:str)->str:
309
  guide = """
310
- You are a Groq advisor what you are to do is to collect user prompts and with the available sql tables availables tailor the question to partain to the data
311
- The tables desctiptions provided below will be what you'd need to look at in order to sanitize the user's prompt.
312
  {table_description}
313
- Here are some organization tips for your queries.
314
  * When an id is requested but not explicitely defined make sure you look at the table above and reference a proper id which will be then proper
315
  * An example includes "get the amount of the purchase with the id 5" sample_response: "get the purchase with the purchase_id 5"
316
  * In the case of numeric or quantifiable attributes such "get the top 3 purchases" sample_response: "get the 3 purchases with the highest amount"
317
  * Ensure that you do not query a table that does not exist
318
-
319
  Question:
320
  --------
321
  {user_question}
@@ -358,6 +358,8 @@ def queryModel(user_prompt:str,model:str = "llama3-70b-8192",api_key:str=userdat
358
  )]
359
 
360
  fotmatted_sql_query = sqlparse.format(sql_query, reindent=True, keyword_case='upper')
 
 
361
  query_n_results = "SQL Query: " + fotmatted_sql_query + "\n\n" + results_df.to_markdown()
362
  summarization = get_summarization(client,user_prompt,results_df,model)
363
  query_n_results += "\n\n" + summarization
@@ -396,5 +398,3 @@ with gr.Blocks() as demo:
396
 
397
 
398
  demo.launch(share=True)
399
-
400
-
 
100
  '''.format(user_question = use_question, df = df)
101
  return chat_with_groq(client,prompt,model,None)
102
 
103
+
104
  import re
105
  from datetime import datetime
106
  import numpy as np
 
307
 
308
  def user_prompt_sanitization(user_prompt:str)->str:
309
  guide = """
310
+ You are a Groq advisor what you are to do is to collect user prompts and with the available sql tables availables tailor the question to partain to the data
311
+ The tables desctiptions provided below will be what you'd need to look at in order to sanitize the user's prompt.
312
  {table_description}
313
+ Here are some organization tips for your queries.
314
  * When an id is requested but not explicitely defined make sure you look at the table above and reference a proper id which will be then proper
315
  * An example includes "get the amount of the purchase with the id 5" sample_response: "get the purchase with the purchase_id 5"
316
  * In the case of numeric or quantifiable attributes such "get the top 3 purchases" sample_response: "get the 3 purchases with the highest amount"
317
  * Ensure that you do not query a table that does not exist
318
+
319
  Question:
320
  --------
321
  {user_question}
 
358
  )]
359
 
360
  fotmatted_sql_query = sqlparse.format(sql_query, reindent=True, keyword_case='upper')
361
+ # print(f"SQL Query: {fotmatted_sql_query}")
362
+ # print(results_df.to_markdown())
363
  query_n_results = "SQL Query: " + fotmatted_sql_query + "\n\n" + results_df.to_markdown()
364
  summarization = get_summarization(client,user_prompt,results_df,model)
365
  query_n_results += "\n\n" + summarization
 
398
 
399
 
400
  demo.launch(share=True)