Spaces:
Running
on
Zero
Running
on
Zero
Push
Browse files- app.py +206 -0
- pyproject.toml +18 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from typing import cast
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
import gradio as gr
|
8 |
+
from gradio.components.image_editor import EditorValue
|
9 |
+
import spaces
|
10 |
+
|
11 |
+
DEVICE = "cuda"
|
12 |
+
|
13 |
+
MAIN_MODEL_REPO_ID = os.getenv("MAIN_MODEL_REPO_ID", None)
|
14 |
+
SUB_MODEL_REPO_ID = os.getenv("SUB_MODEL_REPO_ID", None)
|
15 |
+
SUB_MODEL_SUBFOLDER = os.getenv("SUB_MODEL_SUBFOLDER", None)
|
16 |
+
|
17 |
+
if MAIN_MODEL_REPO_ID is None:
|
18 |
+
raise ValueError("MAIN_MODEL_REPO_ID is not set")
|
19 |
+
if SUB_MODEL_REPO_ID is None:
|
20 |
+
raise ValueError("SUB_MODEL_REPO_ID is not set")
|
21 |
+
if SUB_MODEL_SUBFOLDER is None:
|
22 |
+
raise ValueError("SUB_MODEL_SUBFOLDER is not set")
|
23 |
+
|
24 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
25 |
+
MAIN_MODEL_REPO_ID,
|
26 |
+
torch_dtype=torch.bfloat16,
|
27 |
+
custom_pipeline=SUB_MODEL_REPO_ID,
|
28 |
+
).to(DEVICE)
|
29 |
+
|
30 |
+
|
31 |
+
def crop_divisible_by_16(image: Image.Image) -> Image.Image:
|
32 |
+
w, h = image.size
|
33 |
+
w = w - w % 16
|
34 |
+
h = h - h % 16
|
35 |
+
return image.crop((0, 0, w, h))
|
36 |
+
|
37 |
+
|
38 |
+
@spaces.GPU(duration=150)
|
39 |
+
def predict(
|
40 |
+
image_and_mask: EditorValue | None,
|
41 |
+
seed: int = 0,
|
42 |
+
num_inference_steps: int = 28,
|
43 |
+
max_dimension: int = 1024,
|
44 |
+
condition_scale: float = 1.0,
|
45 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
46 |
+
) -> Image.Image | None:
|
47 |
+
if not image_and_mask:
|
48 |
+
gr.Info("Please upload an image and draw a mask")
|
49 |
+
return None
|
50 |
+
image_np = image_and_mask["background"]
|
51 |
+
image_np = cast(np.ndarray, image_np)
|
52 |
+
|
53 |
+
# If the image is empty, return None
|
54 |
+
if np.sum(image_np) == 0:
|
55 |
+
gr.Info("Please upload an image")
|
56 |
+
return None
|
57 |
+
|
58 |
+
alpha_channel = image_and_mask["layers"][0]
|
59 |
+
alpha_channel = cast(np.ndarray, alpha_channel)
|
60 |
+
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
|
61 |
+
|
62 |
+
# if mask_np is empty, return None
|
63 |
+
if np.sum(mask_np) == 0:
|
64 |
+
gr.Info("Please mark the areas you want to remove")
|
65 |
+
return None
|
66 |
+
|
67 |
+
pipeline.load(
|
68 |
+
SUB_MODEL_REPO_ID,
|
69 |
+
subfolder=SUB_MODEL_SUBFOLDER,
|
70 |
+
)
|
71 |
+
|
72 |
+
image = Image.fromarray(image_np)
|
73 |
+
# Resize to max dimension
|
74 |
+
image.thumbnail((max_dimension, max_dimension))
|
75 |
+
# Ensure dimensions are multiple of 16 (for VAE)
|
76 |
+
image = crop_divisible_by_16(image)
|
77 |
+
|
78 |
+
mask = Image.fromarray(mask_np)
|
79 |
+
mask.thumbnail((max_dimension, max_dimension))
|
80 |
+
mask = crop_divisible_by_16(mask)
|
81 |
+
|
82 |
+
# Image masked is the image with the mask applied (black background)
|
83 |
+
image_masked = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
84 |
+
image_masked.paste(image, (0, 0), mask)
|
85 |
+
|
86 |
+
prompt = "[VIRTUAL STAGING]. An empty room."
|
87 |
+
|
88 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
89 |
+
|
90 |
+
final_image = pipeline(
|
91 |
+
condition_image=image_masked,
|
92 |
+
condition_scale=condition_scale,
|
93 |
+
prompt=prompt,
|
94 |
+
num_inference_steps=num_inference_steps,
|
95 |
+
generator=generator,
|
96 |
+
max_sequence_length=512,
|
97 |
+
).images[0]
|
98 |
+
|
99 |
+
return final_image
|
100 |
+
|
101 |
+
|
102 |
+
intro_markdown = r"""
|
103 |
+
# Inpainting Demo
|
104 |
+
"""
|
105 |
+
|
106 |
+
css = r"""
|
107 |
+
#col-left {
|
108 |
+
margin: 0 auto;
|
109 |
+
max-width: 650px;
|
110 |
+
}
|
111 |
+
#col-right {
|
112 |
+
margin: 0 auto;
|
113 |
+
max-width: 650px;
|
114 |
+
}
|
115 |
+
#col-showcase {
|
116 |
+
margin: 0 auto;
|
117 |
+
max-width: 1100px;
|
118 |
+
}
|
119 |
+
"""
|
120 |
+
|
121 |
+
|
122 |
+
with gr.Blocks(css=css) as demo:
|
123 |
+
gr.Markdown(intro_markdown)
|
124 |
+
|
125 |
+
with gr.Row() as content:
|
126 |
+
with gr.Column(elem_id="col-left"):
|
127 |
+
gr.HTML(
|
128 |
+
"""
|
129 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
130 |
+
<div>
|
131 |
+
Step 1. Upload a room image ⬇️
|
132 |
+
</div>
|
133 |
+
</div>
|
134 |
+
""",
|
135 |
+
max_height=50,
|
136 |
+
)
|
137 |
+
image_and_mask = gr.ImageMask(
|
138 |
+
label="Image and Mask",
|
139 |
+
layers=False,
|
140 |
+
show_fullscreen_button=False,
|
141 |
+
sources=["upload"],
|
142 |
+
show_download_button=False,
|
143 |
+
interactive=True,
|
144 |
+
brush=gr.Brush(default_size=75, colors=["#000000"], color_mode="fixed"),
|
145 |
+
transforms=[],
|
146 |
+
)
|
147 |
+
with gr.Column(elem_id="col-right"):
|
148 |
+
gr.HTML(
|
149 |
+
"""
|
150 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
|
151 |
+
<div>
|
152 |
+
Step 2. Press Run to launch
|
153 |
+
</div>
|
154 |
+
</div>
|
155 |
+
""",
|
156 |
+
max_height=50,
|
157 |
+
)
|
158 |
+
result = gr.Image(label="result")
|
159 |
+
run_button = gr.Button("Run")
|
160 |
+
|
161 |
+
with gr.Accordion("Advanced Settings", open=False):
|
162 |
+
seed = gr.Slider(
|
163 |
+
label="Seed",
|
164 |
+
minimum=0,
|
165 |
+
maximum=100_000,
|
166 |
+
step=1,
|
167 |
+
value=0,
|
168 |
+
)
|
169 |
+
condition_scale = gr.Slider(
|
170 |
+
label="Condition Scale",
|
171 |
+
minimum=-10.0,
|
172 |
+
maximum=10.0,
|
173 |
+
step=0.10,
|
174 |
+
value=1.0,
|
175 |
+
)
|
176 |
+
with gr.Column():
|
177 |
+
max_dimension = gr.Slider(
|
178 |
+
label="Max Dimension",
|
179 |
+
minimum=512,
|
180 |
+
maximum=2048,
|
181 |
+
step=128,
|
182 |
+
value=1024,
|
183 |
+
)
|
184 |
+
|
185 |
+
num_inference_steps = gr.Slider(
|
186 |
+
label="Number of inference steps",
|
187 |
+
minimum=1,
|
188 |
+
maximum=50,
|
189 |
+
step=1,
|
190 |
+
value=28,
|
191 |
+
)
|
192 |
+
|
193 |
+
run_button.click(
|
194 |
+
fn=predict,
|
195 |
+
inputs=[
|
196 |
+
image_and_mask,
|
197 |
+
seed,
|
198 |
+
num_inference_steps,
|
199 |
+
max_dimension,
|
200 |
+
condition_scale,
|
201 |
+
],
|
202 |
+
outputs=[result],
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
demo.launch()
|
pyproject.toml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "VirtualStaging"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.12"
|
7 |
+
dependencies = [
|
8 |
+
"accelerate>=1.2.1",
|
9 |
+
"diffusers==0.31.0",
|
10 |
+
"gradio>=5.12.0",
|
11 |
+
"gradio-imageslider>=0.0.20",
|
12 |
+
"peft>=0.14.0",
|
13 |
+
"pillow>=11.1.0",
|
14 |
+
"safetensors>=0.5.2",
|
15 |
+
"sentencepiece>=0.2.0",
|
16 |
+
"spaces>=0.32.0",
|
17 |
+
"transformers>=4.48.0",
|
18 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.31.0
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
safetensors
|
5 |
+
sentencepiece
|
6 |
+
peft
|
7 |
+
gradio
|
8 |
+
spaces
|
9 |
+
pillow
|
10 |
+
gradio_imageslider
|