File size: 8,068 Bytes
a3068c2 de6b860 a3068c2 674f931 a3068c2 de6b860 a3068c2 2c8d515 a3068c2 674f931 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 7c14093 a3068c2 2c8d515 7c14093 a3068c2 7c14093 2c8d515 de6b860 7c14093 a3068c2 2c8d515 a3068c2 7c14093 2c8d515 7c14093 a3068c2 7c14093 efe8765 7c14093 a3068c2 2c8d515 a3068c2 7c14093 a3068c2 2c8d515 1298371 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 2c8d515 a3068c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import numpy as np
from typing import cast
import torch
from PIL import Image, ImageDraw
from diffusers import DiffusionPipeline
import gradio as gr
from gradio.components.image_editor import EditorValue
import spaces
DEVICE = "cuda"
MAIN_MODEL_REPO_ID = os.getenv("MAIN_MODEL_REPO_ID", None)
SUB_MODEL_REPO_ID = os.getenv("SUB_MODEL_REPO_ID", None)
SUB_MODEL_SUBFOLDER = os.getenv("SUB_MODEL_SUBFOLDER", None)
if MAIN_MODEL_REPO_ID is None:
raise ValueError("MAIN_MODEL_REPO_ID is not set")
if SUB_MODEL_REPO_ID is None:
raise ValueError("SUB_MODEL_REPO_ID is not set")
if SUB_MODEL_SUBFOLDER is None:
raise ValueError("SUB_MODEL_SUBFOLDER is not set")
pipeline = DiffusionPipeline.from_pretrained(
MAIN_MODEL_REPO_ID,
torch_dtype=torch.bfloat16,
custom_pipeline=SUB_MODEL_REPO_ID,
).to(DEVICE)
pipeline.post_init()
def crop_divisible_by_16(image: Image.Image) -> Image.Image:
w, h = image.size
w = w - w % 16
h = h - h % 16
return image.crop((0, 0, w, h))
@spaces.GPU(duration=150)
def predict(
image_and_mask: EditorValue,
condition_image: Image.Image | None,
seed: int = 0,
num_inference_steps: int = 28,
condition_size: int = 512,
target_size: int = 512,
condition_scale: float = 1.0,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> Image.Image | None:
# ) -> tuple[Image.Image, Image.Image] | None:
if not image_and_mask:
gr.Info("Please upload an image and draw a mask")
return None
if not condition_image:
gr.Info("Please upload a furniture reference image")
return None
pipeline.load(
SUB_MODEL_REPO_ID,
subfolder=SUB_MODEL_SUBFOLDER,
)
image_np = image_and_mask["background"]
image_np = cast(np.ndarray, image_np)
# If the image is empty, return None
if np.sum(image_np) == 0:
gr.Info("Please upload an image")
return None
alpha_channel = image_and_mask["layers"][0]
alpha_channel = cast(np.ndarray, alpha_channel)
mask_np = np.where(alpha_channel[:, :, 3] == 0, 0, 255).astype(np.uint8)
# if mask_np is empty, return None
if np.sum(mask_np) == 0:
gr.Info("Please mark the areas you want to remove")
return None
pipeline.load(
SUB_MODEL_REPO_ID,
subfolder=SUB_MODEL_SUBFOLDER,
)
target_image = Image.fromarray(image_np).convert("RGB")
# Resize to max dimension
target_image.thumbnail((target_size, target_size))
new_target_image = Image.new("RGB", (target_size, target_size), (0, 0, 0))
new_target_image.paste(target_image, (0, 0))
# Save target image
new_target_image.save("target_image.png")
mask_image = Image.fromarray(mask_np).convert("L")
mask_image.thumbnail((target_size, target_size))
mask_image_bbox = mask_image.getbbox()
# Fill all the bbox area with 255
draw = ImageDraw.Draw(mask_image)
draw.rectangle(mask_image_bbox, fill=(255))
new_mask_image = Image.new("L", (target_size, target_size), 0)
new_mask_image.paste(mask_image, (0, 0))
# Save mask image
new_mask_image.save("mask_image.png")
# # Image masked is the image with the mask applied (black background)
# image_masked = Image.new("RGB", image.size, (0, 0, 0))
# image_masked.paste(image, (0, 0), mask)
condition_image = condition_image.convert("RGB")
condition_image.thumbnail((condition_size, condition_size))
# Save condition image
new_condition_image = Image.new("RGB", (condition_size, condition_size), (0, 0, 0))
new_condition_image.paste(condition_image, (0, 0))
# Save condition image
new_condition_image.save("condition_image.png")
generator = torch.Generator(device="cpu").manual_seed(seed)
final_image = pipeline(
condition_image=new_condition_image,
prompt="",
image=new_target_image,
mask_image=new_mask_image,
num_inference_steps=num_inference_steps,
height=target_size,
width=target_size,
union_cond_attn=True,
add_cond_attn=False,
latent_lora=False,
default_lora=False,
condition_scale=condition_scale,
generator=generator,
max_sequence_length=512,
).images[0]
final_image_crop = final_image.crop((0, 0, target_size, target_size))
return final_image_crop
intro_markdown = r"""
# Furniture Inpainting Demo
"""
css = r"""
#col-left {
margin: 0 auto;
max-width: 650px;
}
#col-right {
margin: 0 auto;
max-width: 650px;
}
#col-showcase {
margin: 0 auto;
max-width: 1100px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(intro_markdown)
with gr.Row() as content:
with gr.Column(elem_id="col-left"):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 1. Upload a room image ⬇️
</div>
</div>
""",
max_height=50,
)
image_and_mask = gr.ImageMask(
label="Image and Mask",
layers=False,
height="full",
width="full",
show_fullscreen_button=False,
sources=["upload"],
show_download_button=False,
interactive=True,
brush=gr.Brush(default_size=75, colors=["#000000"], color_mode="fixed"),
transforms=[],
)
condition_image = gr.Image(
label="Furniture Reference",
type="pil",
sources=["upload"],
image_mode="RGB",
)
with gr.Column(elem_id="col-right"):
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
<div>
Step 2. Press Run to launch
</div>
</div>
""",
max_height=50,
)
# image_slider = ImageSlider(
# label="Result",
# interactive=False,
# )
result = gr.Image(label="Result")
run_button = gr.Button("Run")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=100_000,
step=1,
value=0,
)
condition_scale = gr.Slider(
label="Condition Scale",
minimum=-10.0,
maximum=10.0,
step=0.10,
value=1.0,
)
with gr.Column():
condition_size = gr.Slider(
label="Condition Size",
minimum=256,
maximum=1024,
step=128,
value=512,
)
target_size = gr.Slider(
label="Target Size",
minimum=256,
maximum=1024,
step=128,
value=512,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
run_button.click(
fn=predict,
inputs=[
image_and_mask,
condition_image,
seed,
num_inference_steps,
condition_size,
target_size,
condition_scale,
],
# outputs=[image_slider],
outputs=[result],
)
demo.launch()
|