Partial-Arabic-Diacritization / partial_dd_metrics.py
bkhmsi's picture
pdd working now
ebc546a
raw
history blame
11.5 kB
from typing import NamedTuple
from argparse import ArgumentParser
from tqdm import tqdm
import logging
import numpy as np
import torch as T
from torch.nn import functional as F
import diac_utils as du
_x = [
'a'
]
# logging.setLevel(logging.INFO)
logger = logging.getLogger(__file__)
logger.setLevel(logging.INFO)
def logln(*texts: str):
# logger.info(' '.join(texts))
print(*texts)
# Relative improvement:
# T.mean((pred_c.argmax('c') == gt) - (pred_m.argmax('c') == gt))
# Coverage Confidence:
# pred_c.argmax('c')[pred_c.argmax('c') != pred_m.argmax('c')].mean()
class PartialDiacMetrics(NamedTuple):
diff_total: float
worse_total: float
diff_relative: float
der_total: float
selectivity: float
hidden_der: float
partial_der: float
reader_error: float
def load_data(path: str):
if path.endswith('.txt'):
with open(path, 'r', encoding='utf-8') as fin:
return fin.readlines()
else:
return T.load(path)
def parse_data(
data,
logits: bool = False,
side=None,
):
if logits:
ld = data['line_data']
diac_logits = T.tensor(ld[f'diac_logits_{side}'])
# diac_pred: T.Tensor = ld['diac_pred']
diac_pred: T.Tensor = diac_logits.argmax(dim=-1)
diac_gt : T.Tensor = ld['diac_gt']
# diac_logits = (ld['diac_logits_ctxt'], ld['diac_logits_base'])
return diac_pred, diac_gt, diac_logits
if isinstance(data, dict):
ld = data.get('line_data_fix', data['line_data'])
if side is None:
diac_pred: T.Tensor = ld['diac_pred']
else:
diac_pred: T.Tensor = ld[f'diac_logits_{side}'].argmax(axis=-1)
diac_gt : T.Tensor = ld['diac_gt']
return diac_pred, diac_gt
elif isinstance(data, list):
data_indices = [
du.diac_ids_of_line(du.strip_tatweel(du.normalize_spaces(line)))
for line in data
]
max_len = max(map(len, data_indices))
out = np.full((len(data), max_len), fill_value=du.DIAC_PAD_IDX)
for i_line, line_indices in enumerate(data_indices):
out[i_line][:len(line_indices)] = line_indices
return out, None
elif isinstance(data, (T.Tensor, np.ndarray)):
return data, None
else:
raise NotImplementedError
def make_mask_hard(
pred_c: T.Tensor,
pred_m: T.Tensor,
):
selection = (pred_c != pred_m)
return selection
def make_mask_logits(
pred_c: T.Tensor,
pred_m: T.Tensor,
threshold: float = 0.1,
version: str = '2',
) -> T.BoolTensor:
logger.warning(f"{version=}, {threshold=}")
pred_c = T.softmax(T.tensor(pred_c), dim=-1)
pred_m = T.softmax(T.tensor(pred_m), dim=-1)
# pred_i = pred_c.argmax(dim=-1)
if version == 'hard':
selection = pred_c.argmax(-1) != pred_m.argmax(-1)
elif version == '0':
selection = pred_c.max(dim=-1).values > pred_m.max(dim=-1).values
selection = selection & (pred_m.max(dim=-1).values > threshold)
elif version == '1':
pred_c_conf = pred_c.max(dim=-1).values
pred_m_conf = pred_m.max(dim=-1).values
selection = (pred_c_conf - pred_m_conf) > threshold
elif version == '1.1':
pred_c_conf = pred_c.max(dim=-1).values
pred_m_conf = pred_m.max(dim=-1).values
selection = (pred_c_conf - pred_m_conf).abs() > threshold
elif version.startswith('2'):
if version == '2':
max_c = pred_c.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c) > threshold
elif version == '2.1':
max_c = pred_m.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c) > threshold
elif version == '2.abs':
max_c = pred_c.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c).abs() > threshold
elif version == '2.1.abs':
max_c = pred_m.argmax(dim=-1, keepdims=True)
selection = T.gather(pred_c - pred_m, dim=-1, index=max_c).abs() > threshold
elif version == '3':
selection = (pred_c - pred_m).max(dim=-1).values > threshold
elif version == '4':
selection_hard = (pred_c.argmax(-1) != pred_m.argmax(-1))
# selection_logits = (pred_c.max(-1).values - pred_m.max(-1).values) > threshold
selection_logits = T.gather(pred_c - pred_m, dim=-1, index=pred_c.argmax(-1, keepdims=True)) > threshold
selection = selection_hard & selection_logits.squeeze()
# selection = (pred_c != pred_m)
return selection.squeeze()
def analysis_summary(
pred_c : T.LongTensor,
pred_m : T.LongTensor,
labels : T.LongTensor,
padding_mask: T.BoolTensor,
*,
selection : T.Tensor = None,
random: bool = False,
logits: tuple = None
):
#^ pred_c: [b tw tc | ClassId]
#^ pred_m: [b tw tc | ClassId]
#^ labels: [b tw tc | ClassId]
padding_mask = T.tensor(padding_mask)
# padding_mask[:, 200:] = False
nonpad_mask = ~padding_mask
num_chars = nonpad_mask.sum()
if logits is not None:
logits = tuple(map(T.tensor, logits))
# pred_c = (logits[0] + logits[1]).argmax(-1)
pred_c = (T.softmax(logits[0], dim=-1) + T.softmax(logits[1], dim=-1)).argmax(-1)
pred_c = T.tensor(pred_c)[nonpad_mask]
pred_m = T.tensor(pred_m)[nonpad_mask]
labels = T.tensor(labels)[nonpad_mask]
#^ : [(b * tw * tc) | ClassId]
ctxt_match = (pred_c == labels).float()
base_match = (pred_m == labels).float()
selection = T.tensor(selection)[nonpad_mask]
if random:
selection = pred_c.new_empty(pred_c.shape).bernoulli_(p=selection.float().mean()).to(bool)
unselected = ~selection
assert num_chars > 0
assert selection.sum() > 0
base_accuracy = base_match[unselected].sum() / unselected.sum()
ctxt_accuracy = ctxt_match[selection].sum() / selection.sum()
correct_total = ctxt_match.sum() / num_chars
der_total = 1 - correct_total
cmp = (ctxt_match - base_match)[selection]
diff = T.sum(cmp)
diff_total = diff / num_chars
diff_relative = diff / selection.sum()
selectivity = selection.sum() / num_chars
worse_total = base_match[selection].sum() / num_chars
hidden_der = 1.0 - base_accuracy
partial_der = 1.0 - ctxt_accuracy
reader_error = selectivity * partial_der + (1 - selectivity) * hidden_der
return PartialDiacMetrics(
diff_total = round(diff_total.item() * 100, 2),
worse_total = round(worse_total.item() * 100, 2),
diff_relative = round(diff_relative.item() * 100, 2),
der_total = round(der_total.item() * 100, 2),
selectivity = round(selectivity.item() * 100, 2),
hidden_der = round(hidden_der.item() * 100, 2),
partial_der = round(partial_der.item() * 100, 2),
reader_error = round(reader_error.item() * 100, 2)
)
def relative_improvement_soft(
pred_c : T.Tensor,
pred_m : T.Tensor,
labels : T.LongTensor,
padding_mask: T.Tensor,
):
#^ pred_c: [b tw tc Classes="15"]
#^ pred_m: [b tw tc Classes="15"]
padding_mask = T.tensor(padding_mask)
nonpad_mask = 1 - padding_mask.float()
num_chars = nonpad_mask.sum()
pred_c = T.tensor(pred_c)[~padding_mask]
pred_m = T.tensor(pred_m)[~padding_mask]
#^ : [(b * tw * tc), Classes]
labels = T.tensor(labels)[~padding_mask]
#^ : [(b * tw * tc) | ClassId]
ctxt_match = T.gather(pred_c, dim=1, index=labels)
base_match = T.gather(pred_m, dim=1, index=labels)
selection = (pred_c.argmax(-1) != pred_m.argmax(-1))
better = T.sum(ctxt_match - base_match) / num_chars
selectivity = selection.sum() / num_chars
worse = base_match[selection].sum() / num_chars
return better, worse, selectivity
def relative_improvement_masked_soft(
pred_c: T.Tensor,
pred_m: T.Tensor,
ground_truth: T.LongTensor,
padding_mask: T.Tensor,
):
raise NotImplementedError
#^ pred_c: [b tw tc "13"]
#^ pred_m: [b tw tc "13"]
#^ ground_truth: [b tw tc ClassId]
nonpad_mask = 1 - padding_mask
selection_mask = pred_c.argmax(3) != pred_m.argmax(3)
#^ selection_mask: [b tw tc]
probs = F.softmax(pred_c.clone(), dim=-1)
probs_gt = T.gather(probs, dim=-1, index=ground_truth.unsqueeze(-1)).squeeze(-1)
#^ probs_gt: [b tw tc]
result = probs_gt[selection_mask & nonpad_mask].mean()
return result
def coverage_confidence(
pred_c: T.Tensor,
pred_m: T.Tensor,
padding_mask: T.Tensor,
# selection_mask: T.Tensor,
):
raise NotImplementedError
#^ pred_c: [b tw tc "13"]
#^ pred_m: [b tw tc "13"]
#^ selection_mask: [b tw tc (bool)]
pred_c_id = pred_c.argmax(3)
pred_m_id = pred_m.argmax(3)
selected = pred_c_id[pred_c_id != pred_m_id]
nonpad_mask = 1 - padding_mask
result = selected.sum() / nonpad_mask.sum()
return result
def cli():
parser = ArgumentParser('Compare diacritics from base/ctxt systems with partial diac metrics.')
parser.add_argument('-m', '--model-output-base', help="Path to tensor.pt dump files of base diacs.")
parser.add_argument('-c', '--model-output-ctxt', help="Path to tensor.pt dump files of ctxt diacs.")
parser.add_argument('--gt', default=None, help="Path to tensor.pt for gt only.")
parser.add_argument('--mode', choices=['hard', 'logits'], default='hard')
args = parser.parse_args()
model_output_base = parse_data(
load_data(args.model_output_base),
# logits=args.mode == 'logits',
logits=True,
side='base',
)
model_output_ctxt = parse_data(
load_data(args.model_output_ctxt),
# logits=args.mode == 'logits',
logits=True,
side='ctxt',
)
#^ shape: [b, tc] -> ClassId
diacs_pred = model_output_base
logln(f"{model_output_base[0].shape=} , {model_output_ctxt[0].shape=}")
assert len(model_output_base[0]) == len(model_output_ctxt[0])
# for diacs_base, diacs_ctxt in zip(
# tqdm(model_output_base, dynamic_cols=True),
# model_output_ctxt
# ):
# diacs = np.where(diacs_base != diacs_ctxt, diacs_ctxt, 0)[diacs_ctxt != -1] #< Ignore padding
xc = model_output_ctxt
xm = model_output_base
# if args.mode == 'logits':
# elif args.mode == 'hard':
# xc = model_output_ctxt
# xm = model_output_base
# if args.gt is not None:
# ground_truth = parse_data(load_data(args.gt))[1]
if xm[1] is not None:
ground_truth = xm[1]
elif xc[1] is not None:
ground_truth = xc[1]
assert ground_truth is not None
if args.mode == 'hard':
selection = make_mask_hard(xc[0], xm[0])
elif args.mode == 'logits':
selection = make_mask_logits(xc[2], xm[2])
metrics = analysis_summary(
xc[0], xm[0], ground_truth, ground_truth == -1,
selection=selection,
logits=(xc[2], xm[2])
)
logln("Actual Totals:", metrics)
metrics = analysis_summary(
xc[0], xm[0], ground_truth, ground_truth == -1, random=True,
selection=selection,
logits=(xc[2], xm[2])
)
logln("Random Marked Chars:", metrics)