bkhmsi's picture
support for TD2
d7c4b94
raw
history blame
6.81 kB
import os
import yaml
import gdown
import gradio as gr
from predict import PredictTri
from huggingface_hub import hf_hub_download
output_path = "tashkeela-d2.pt"
gdrive_templ = "https://drive.google.com/file/d/{}/view?usp=sharing"
if not os.path.exists(output_path):
model_gdrive_id = "1FGelqImFkESbTyRsx_elkKIOZ9VbhRuo"
gdown.download(gdrive_templ.format(model_gdrive_id), output=output_path, quiet=False, fuzzy=True)
output_path = "vocab.vec"
if not os.path.exists(output_path):
vocab_gdrive_id = "1-0muGvcSYEf8RAVRcwXay4MRex6kmCii"
gdown.download(gdrive_templ.format(vocab_gdrive_id), output=output_path, quiet=False, fuzzy=True)
if not os.path.exists("td2/tashkeela-ashaar-td2.pt"):
hf_hub_download(repo_id="munael/Partial-Arabic-Diacritization-TD2", filename="tashkeela-ashaar-td2.pt", local_dir="td2")
with open("config.yaml", 'r', encoding="utf-8") as file:
config = yaml.load(file, Loader=yaml.FullLoader)
config["train"]["max-sent-len"] = config["predictor"]["window"]
config["train"]["max-token-count"] = config["predictor"]["window"] * 3
predictor = PredictTri(config)
current_model_name = "TD2"
config["model-name"] = current_model_name
def diacritze_full(text, model_name):
global current_model_name, predictor
if model_name != current_model_name:
config["model-name"] = model_name
current_model_name = model_name
predictor = PredictTri(config)
do_hard_mask = None
threshold = None
predictor.create_dataloader(text, False, do_hard_mask, threshold, model_name)
diacritized_lines = predictor.predict_partial(do_partial=False, lines=text.split('\n'))
return diacritized_lines
def diacritze_partial(text, mask_mode, threshold, model_name):
global current_model_name, predictor
if model_name != current_model_name:
config["model-name"] = model_name
current_model_name = model_name
predictor = PredictTri(config)
do_partial = True
predictor.create_dataloader(text, do_partial, mask_mode=="Hard", threshold, model_name)
diacritized_lines = predictor.predict_partial(do_partial=do_partial, lines=text.split('\n'))
return diacritized_lines
with gr.Blocks(theme=gr.themes.Default(text_size="lg")) as demo:
gr.Markdown(
"""
# Partial Diacritization: A Context-Contrastive Inference Approach
### Authors: Muhammad ElNokrashy, Badr AlKhamissi
### Paper Link: TBD (abstract below)
""")
gr.HTML(
"<img src='./PartialDD.png' style='float:right'/>"
)
model_choice = gr.Dropdown(
choices=["D2", "TD2"],
label="Diacritization Model",
value=current_model_name
)
with gr.Tab(label="Full Diacritization"):
full_input_txt = gr.Textbox(
placeholder="ุงูƒุชุจ ู‡ู†ุง",
lines=5,
label="Input",
type='text',
rtl=True,
text_align='right',
)
full_output_txt = gr.Textbox(
lines=5,
label="Output",
type='text',
rtl=True,
text_align='right',
show_copy_button=True,
)
full_btn = gr.Button(value="Shakkel")
full_btn.click(diacritze_full, inputs=[full_input_txt, model_choice], outputs=[full_output_txt])
gr.Examples(
examples=[
"ูˆู„ูˆ ุญู…ู„ ู…ู† ู…ุฌู„ุณ ุงู„ุฎูŠุงุฑ ุŒ ูˆู„ู… ูŠู…ู†ุน ู…ู† ุงู„ูƒู„ุงู…", "TD2"
],
inputs=full_input_txt,
outputs=full_output_txt,
fn=diacritze_full,
cache_examples=True,
)
with gr.Tab(label="Partial Diacritization") as partial_settings:
with gr.Row():
masking_mode = gr.Radio(choices=["Hard", "Soft"], value="Hard", label="Masking Mode")
threshold_slider = gr.Slider(label="Soft Masking Threshold", minimum=0, maximum=1, value=0.1)
partial_input_txt = gr.Textbox(
placeholder="ุงูƒุชุจ ู‡ู†ุง",
lines=5,
label="Input",
type='text',
rtl=True,
text_align='right',
)
partial_output_txt = gr.Textbox(
lines=5,
label="Output",
type='text',
rtl=True,
text_align='right',
show_copy_button=True,
)
partial_btn = gr.Button(value="Shakkel")
partial_btn.click(diacritze_partial, inputs=[partial_input_txt, masking_mode, threshold_slider, model_choice], outputs=[partial_output_txt])
gr.Examples(
examples=[
["ูˆู„ูˆ ุญู…ู„ ู…ู† ู…ุฌู„ุณ ุงู„ุฎูŠุงุฑ ุŒ ูˆู„ู… ูŠู…ู†ุน ู…ู† ุงู„ูƒู„ุงู…", "Hard", 0, "TD2"],
["ูˆู„ูˆ ุญู…ู„ ู…ู† ู…ุฌู„ุณ ุงู„ุฎูŠุงุฑ ุŒ ูˆู„ู… ูŠู…ู†ุน ู…ู† ุงู„ูƒู„ุงู…", "Soft", 0.1, "TD2"],
["ูˆู„ูˆ ุญู…ู„ ู…ู† ู…ุฌู„ุณ ุงู„ุฎูŠุงุฑ ุŒ ูˆู„ู… ูŠู…ู†ุน ู…ู† ุงู„ูƒู„ุงู…", "Soft", 0.01, "TD2"],
],
inputs=[partial_input_txt, masking_mode, threshold_slider],
outputs=partial_output_txt,
fn=diacritze_partial,
cache_examples=True,
)
gr.Markdown(
"""
### Abstract
> Diacritization plays a pivotal role in improving readability and disambiguating the meaning of Arabic texts. Efforts have so far focused on marking every eligible character (Full Diacritization). Comparatively overlooked, Partial Diacritzation (PD) is the selection of a subset of characters to be marked to aid comprehension where needed.Research has indicated that excessive diacritic marks can hinder skilled readers---reducing reading speed and accuracy. We conduct a behavioral experiment and show that partially marked text is often easier to read than fully marked text, and sometimes easier than plain text. In this light, we introduce Context-Contrastive Partial Diacritization (CCPD)---a novel approach to PD which integrates seamlessly with existing Arabic diacritization systems. CCPD processes each word twice, once with context and once without, and diacritizes only the characters with disparities between the two inferences. Further, we introduce novel indicators for measuring partial diacritization quality {SR, PDER, HDER, ERE}, essential for establishing this as a machine learning task. Lastly, we introduce TD2, a Transformer-variant of an established model which offers a markedly different performance profile on our proposed indicators compared to all other known systems.
""")
if __name__ == "__main__":
demo.queue().launch(
# share=False,
# debug=False,
# server_port=7860,
# server_name="0.0.0.0",
# ssl_verify=False,
# ssl_certfile="cert.pem",
# ssl_keyfile="key.pem"
)