File size: 10,294 Bytes
d36d50b ebc546a d36d50b bb42b73 d36d50b d7c4b94 d36d50b ebc546a bb42b73 ebc546a bb42b73 ebc546a bb42b73 ebc546a d36d50b bb42b73 d36d50b bb42b73 d36d50b d7c4b94 ebc546a d7c4b94 d36d50b d7c4b94 bb42b73 d36d50b d7c4b94 bb42b73 d36d50b bb42b73 d36d50b bb42b73 d36d50b bb42b73 d36d50b cd87bdb d36d50b ebc546a bb42b73 ebc546a bb42b73 ebc546a d36d50b ebc546a d36d50b ebc546a d36d50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from typing import Iterable, Union, Tuple
from collections import Counter
import argparse
import os
import yaml
from pyarabic.araby import tokenize, strip_tatweel, strip_tashkeel
from tqdm import tqdm
import numpy as np
import torch as T
from torch.utils.data import DataLoader
from diac_utils import HARAKAT_MAP, shakkel_char, flat2_3head
from model_partial import PartialDD
from data_utils import DatasetUtils
from dataloader import DataRetriever
from dataloader_plm import DataRetriever as DataRetrieverPLM
from segment import segment
from partial_dd_metrics import (
parse_data,
load_data,
make_mask_hard,
make_mask_logits,
)
def apply_tashkeel(
line: str,
diacs: Union[np.ndarray, T.Tensor]
):
line_w_diacs = ""
ts, tw = diacs.shape
diacs = diacs.flatten()
diacs_h3 = flat2_3head(diacs)
diacs_h3 = tuple(x.reshape(ts, tw) for x in diacs_h3)
diac_char_idx = 0
diac_word_idx = 0
for ch in line:
line_w_diacs += ch
if ch == " ":
diac_char_idx = 0
diac_word_idx += 1
else:
tashkeel = (diacs_h3[0][diac_word_idx][diac_char_idx], diacs_h3[1][diac_word_idx][diac_char_idx], diacs_h3[2][diac_word_idx][diac_char_idx])
diac_char_idx += 1
line_w_diacs += shakkel_char(*tashkeel)
return line_w_diacs
def diac_text(data, model_output_base, model_output_ctxt, selection_mode='contrastive-hard', threshold=0.1):
mode = selection_mode
if mode == 'contrastive-hard':
# model_output_base = parse_data(data_base)[0]
# model_output_ctxt = parse_data(data_ctxt)[0]
# diacs = np.where(diacs_base != diacs_ctxt, diacs_ctxt, 0)
diacritics = np.where(
make_mask_hard(model_output_ctxt, model_output_base),
model_output_ctxt.argmax(-1),
0,
).astype(int)
else:
# model_output_base = parse_data(data_base, logits=True, side='base')[2]
# model_output_ctxt = parse_data(data_ctxt, logits=True, side='ctxt')[2]
diacritics = np.where(
make_mask_logits(
model_output_ctxt, model_output_base,
version=mode, threshold=threshold,
),
model_output_ctxt.argmax(-1),
0,
).astype(int)
#^ shape: [b, tc | ClassId]
diacs_pred = model_output_base
assert len(diacs_pred) == len(data)
data = [
' '.join(tokenize(
line.strip(),
morphs=[strip_tashkeel, strip_tatweel]
))
for line in data
]
output = []
for line, line_diacs in zip(
tqdm(data),
diacritics
):
line = apply_tashkeel(line, line_diacs)
output.append(line)
return output
class Predictor:
def __init__(self, config):
self.data_utils = DatasetUtils(config)
vocab_size = len(self.data_utils.letter_list)
word_embeddings = self.data_utils.embeddings
self.config = config
self.device = T.device(
config['predictor'].get('device', 'cuda:0')
if T.cuda.is_available() else 'cpu'
)
self.model = PartialDD(config)
if config["model-name"] == "D2":
self.model.sentence_diac.build(word_embeddings, vocab_size)
state_dict = T.load(config["paths"]["load"], map_location=T.device(self.device))['state_dict']
else:
state_dict = T.load(config["paths"]["load-td2"], map_location=T.device(self.device))['state_dict']
self.model.load_state_dict(state_dict, strict=False)
self.model.to(self.device)
self.model.eval()
def create_dataloader(self, text, do_partial, do_hard_mask, threshold, model_name):
self.threshold = threshold
self.do_hard_mask = do_hard_mask
stride = self.config["segment"]["stride"]
window = self.config["segment"]["window"]
min_window = self.config["segment"]["min-window"]
if self.do_hard_mask or not do_partial:
segments, mapping = segment([text], stride, window, min_window)
mapping_lines = []
for sent_idx, seg_idx, word_idx, char_idx in mapping:
mapping_lines += [f"{sent_idx}, {seg_idx}, {word_idx}, {char_idx}"]
self.mapping = self.data_utils.load_mapping_v3_from_list(mapping_lines)
self.original_lines = [text]
self.segments = segments
else:
segments = text.split('\n')
self.segments = segments
self.original_lines = text.split('\n')
self.data_loader = DataLoader(
DataRetriever(self.data_utils, segments)
if model_name == "D2"
else DataRetrieverPLM(segments, self.data_utils,
is_test=True,
tokenizer=self.model.tokenizer
),
batch_size=self.config["predictor"].get("batch-size", 32),
shuffle=False,
num_workers=self.config['loader'].get('num-workers', 0),
)
class PredictTri(Predictor):
def __init__(self, config):
super().__init__(config)
self.diacritics = {
"FATHA": 1,
"KASRA": 2,
"DAMMA": 3,
"SUKUN": 4
}
self.votes: Union[Counter[int], Counter[bool]] = Counter()
def count_votes(
self,
things: Union[Iterable[int], Iterable[bool]]
):
self.votes.clear()
self.votes.update(things)
return self.votes.most_common(1)[0][0]
def predict_majority_vote(self):
y_gen_diac, y_gen_tanween, y_gen_shadda = self.model.predict(self.data_loader)
diacritized_lines, _ = self.coalesce_votes_by_majority(y_gen_diac, y_gen_tanween, y_gen_shadda)
return diacritized_lines
def predict_partial(self, do_partial, lines):
outputs = self.model.predict_partial(self.data_loader, return_extra=True, eval_only='both', do_partial=do_partial)
if self.do_hard_mask or not do_partial:
y_gen_diac, y_gen_tanween, y_gen_shadda = outputs['diacritics']
diac_lines, _ = self.coalesce_votes_by_majority(y_gen_diac, y_gen_tanween, y_gen_shadda)
else:
diac_lines = diac_text(lines, outputs["other"][1], outputs["other"][0], selection_mode='1', threshold=self.threshold)
return '\n'.join(diac_lines)
def predict_majority_vote_context_contrastive(self, overwrite_cache=False):
assert isinstance(self.model, PartialDD)
if not os.path.exists("dataset/cache/y_gen_diac.npy") or overwrite_cache:
if not os.path.exists("dataset/cache"):
os.mkdir("dataset/cache")
# segment_outputs = self.model.predict_partial(self.data_loader, return_extra=True)
segment_outputs = self.model.predict_partial(self.data_loader, return_extra=False, eval_only='both')
T.save(segment_outputs, "dataset/cache/cache.pt")
else:
segment_outputs = T.load("dataset/cache/cache.pt")
y_gen_diac, y_gen_tanween, y_gen_shadda = segment_outputs['diacritics']
diacritized_lines, extra_for_lines = self.coalesce_votes_by_majority(
y_gen_diac, y_gen_tanween, y_gen_shadda,
)
extra_out = {
'line_data': {
**extra_for_lines,
},
'segment_data': {
**segment_outputs,
# 'logits': segment_outputs['logits'],
}
}
return diacritized_lines, extra_out
def coalesce_votes_by_majority(
self,
y_gen_diac: np.ndarray,
y_gen_tanween: np.ndarray,
y_gen_shadda: np.ndarray,
):
prepped_lines_og = [' '.join(tokenize(strip_tatweel(line))) for line in self.original_lines]
max_line_chars = max(len(line) for line in prepped_lines_og)
diacritics_pred = np.full((len(self.original_lines), max_line_chars), fill_value=-1, dtype=int)
count_processed_sents = 0
do_break = False
diacritized_lines = []
for sent_idx, line in enumerate(tqdm(prepped_lines_og)):
count_processed_sents = sent_idx + 1
line = line.strip()
diacritized_line = ""
for char_idx, char in enumerate(line):
diacritized_line += char
char_vote_diacritic = []
# ? This is the voting part
if sent_idx not in self.mapping:
continue
mapping_s_i = self.mapping[sent_idx]
for seg_idx in mapping_s_i:
if self.data_utils.debug and seg_idx >= 256:
do_break = True
break
mapping_g_i = mapping_s_i[seg_idx]
for t_idx in mapping_g_i:
mapping_t_i = mapping_g_i[t_idx]
if char_idx in mapping_t_i:
c_idx = mapping_t_i.index(char_idx)
output_idx = np.s_[seg_idx, t_idx, c_idx]
diac_h3 = (y_gen_diac[output_idx], y_gen_tanween[output_idx], y_gen_shadda[output_idx])
diac_char_i = HARAKAT_MAP.index(diac_h3)
if c_idx < 13 and diac_char_i != 0:
char_vote_diacritic.append(diac_char_i)
if do_break:
break
if len(char_vote_diacritic) > 0:
char_mv_diac = self.count_votes(char_vote_diacritic)
diacritized_line += shakkel_char(*HARAKAT_MAP[char_mv_diac])
diacritics_pred[sent_idx, char_idx] = char_mv_diac
else:
diacritics_pred[sent_idx, char_idx] = 0
if do_break:
break
diacritized_lines += [diacritized_line.strip()]
print(f'[INFO] Cutting stats from {len(diacritics_pred)} to {count_processed_sents}')
extra = {
'diac_pred': diacritics_pred[:count_processed_sents],
}
return diacritized_lines, extra |