File size: 13,855 Bytes
d7c4b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from typing import List, Iterator, cast
import copy
import numpy as np
import torch as T
from torch import nn
from torch.nn import functional as F
from transformers import BertConfig, BertModel
from transformers import AutoTokenizer, AutoModel, AutoConfig
from transformers import PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
class Diacritizer(nn.Module):
def __init__(
self,
config,
device=None,
load_pretrained=True
) -> None:
super().__init__()
self._dummy = nn.Parameter(T.ones(1))
if 'modeling' in config:
config = config['modeling']
self.config = config
model_name = config.get('base_model', "CAMeL-Lab/bert-base-arabic-camelbert-mix-ner")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if load_pretrained:
self.token_model: BertModel = AutoModel.from_pretrained(model_name)
else:
marbert_config = AutoConfig.from_pretrained(model_name)
self.token_model = AutoModel.from_config(marbert_config)
self.num_classes = 15
self.diac_model_config = BertConfig(**config['diac_model_config'])
self.token_model_config: BertConfig = self.token_model.config
self.char_embs = nn.Embedding(config["num-chars"], embedding_dim=config["char-embed-dim"])
self.diac_emb_model = self.build_diac_model(self.token_model)
self.down_project_token_embeds_deep = None
self.down_project_token_embeds = None
if 'token_hidden_size' in config:
if config['token_hidden_size'] == 'auto':
down_proj_size = self.diac_emb_model.config.hidden_size
else:
down_proj_size = config['token_hidden_size']
if config.get('deep-down-proj', False):
self.down_project_token_embeds_deep = nn.Sequential(
nn.Linear(
self.token_model_config.hidden_size + config["char-embed-dim"],
down_proj_size * 4,
bias=False,
),
nn.Tanh(),
nn.Linear(
down_proj_size * 4,
down_proj_size,
bias=False,
)
)
# else:
self.down_project_token_embeds = nn.Linear(
self.token_model_config.hidden_size + config["char-embed-dim"],
down_proj_size,
bias=False,
)
# assert self.down_project_token_embeds_deep is None or self.down_project_token_embeds is None
classifier_feature_size = self.diac_model_config.hidden_size
if config.get('deep-cls', False):
# classifier_feature_size = 512
self.final_feature_transform = nn.Linear(
self.diac_model_config.hidden_size
+ self.token_model_config.hidden_size,
#^ diac_features + [residual from token_model]
out_features=classifier_feature_size,
bias=False
)
else:
self.final_feature_transform = None
self.feature_layer_norm = nn.LayerNorm(classifier_feature_size)
self.classifier = nn.Linear(classifier_feature_size, self.num_classes, bias=True)
self.trim_model_(config)
self.dropout = nn.Dropout(config['dropout'])
self.sent_dropout_p = config['sentence_dropout']
self.closs = F.cross_entropy
def build_diac_model(self, token_model=None):
if self.config.get('pre-init-diac-model', False):
model = copy.deepcopy(self.token_model)
model.pooler = None
model.embeddings.word_embeddings = None
num_layers = self.config.get('keep-token-model-layers', None)
model.encoder.layer = nn.ModuleList(
list(model.encoder.layer[num_layers:num_layers*2])
)
model.encoder.config.num_hidden_layers = num_layers
else:
model = BertModel(self.diac_model_config)
return model
def trim_model_(self, config):
self.token_model.pooler = None
self.diac_emb_model.pooler = None
# self.diac_emb_model.embeddings = None
self.diac_emb_model.embeddings.word_embeddings = None
num_token_model_kept_layers = config.get('keep-token-model-layers', None)
if num_token_model_kept_layers is not None:
self.token_model.encoder.layer = nn.ModuleList(
list(self.token_model.encoder.layer[:num_token_model_kept_layers])
)
self.token_model.encoder.config.num_hidden_layers = num_token_model_kept_layers
if not config.get('full-finetune', False):
for param in self.token_model.parameters():
param.requires_grad = False
finetune_last_layers = config.get('num-finetune-last-layers', 4)
if finetune_last_layers > 0:
unfrozen_layers = self.token_model.encoder.layer[-finetune_last_layers:]
for layer in unfrozen_layers:
for param in layer.parameters():
param.requires_grad = True
def get_grouped_params(self):
downstream_params: Iterator[nn.Parameter] = cast(
Iterator,
(param
for module in (self.diac_emb_model, self.classifier, self.char_embs)
for param in module.parameters())
)
pg = {
'pretrained': self.token_model.parameters(),
'downstream': downstream_params,
}
return pg
@property
def device(self):
return self._dummy.device
def step(self, xt, yt, mask=None, subword_lengths: T.Tensor=None):
# ^ word_x, char_x, diac_x are Indices
# ^ xt : self.preprocess((word_x, char_x, diac_x)),
# ^ yt : T.tensor(diac_y, dtype=T.long),
# ^ subword_lengths: T.tensor(subword_lengths, dtype=T.long)
#< Move char_x, diac_x to device because they're small and trainable
xt[0], xt[1], yt, subword_lengths = self._slim_batch_size(xt[0], xt[1], yt, subword_lengths)
xt[0] = xt[0].to(self.device)
xt[1] = xt[1].to(self.device)
# xt[2] = xt[2].to(self.device)
yt = yt.to(self.device)
#^ yt: [b tw tc]
Nb, Tword, Tchar = xt[1].shape
if Tword * Tchar < 500:
diac = self(*xt, subword_lengths)
loss = self.closs(diac.view(-1, self.num_classes), yt.view(-1), reduction='sum')
else:
num_chunks = Tword * Tchar / 300
loss = 0
for i in range(round(num_chunks+0.5)):
_slice = slice(i*300, (i+1)*300)
chunk = self._slice_batch(xt, _slice)
diac = self(*chunk, subword_lengths[_slice])
chunk_loss = self.closs(diac.view(-1, self.num_classes), yt.view(-1), reduction='sum')
loss = loss + chunk_loss
return loss
def _slice_batch(self, xt: List[T.Tensor], _slice):
return [xt[0][_slice], xt[1][_slice], xt[2][_slice]]
def _slim_batch_size(
self,
tx: T.Tensor,
cx: T.Tensor,
yt: T.Tensor,
subword_lengths: T.Tensor
):
#^ tx : [b tt]
#^ cx : [b tw tc]
#^ yt : [b tw tc]
token_nonpad_mask = tx.ne(self.tokenizer.pad_token_id)
Ttoken = token_nonpad_mask.sum(1).max()
tx = tx[:, :Ttoken]
char_nonpad_mask = cx.ne(0)
Tword = char_nonpad_mask.any(2).sum(1).max()
Tchar = char_nonpad_mask.sum(2).max()
cx = cx[:, :Tword, :Tchar]
yt = yt[:, :Tword, :Tchar]
subword_lengths = subword_lengths[:, :Tword]
return tx, cx, yt, subword_lengths
def token_dropout(self, toke_x):
#^ toke_x : [b tw]
if self.training:
q = 1.0 - self.sent_dropout_p
sdo = T.bernoulli(T.full(toke_x.shape, q))
toke_x[sdo == 0] = self.tokenizer.pad_token_id
return toke_x
def sentence_dropout(self, word_embs: T.Tensor):
#^ word_embs : [b tw dwe]
if self.training:
q = 1.0 - self.sent_dropout_p
sdo = T.bernoulli(T.full(word_embs.shape[:2], q))
sdo = sdo.detach().unsqueeze(-1).to(word_embs)
word_embs = word_embs * sdo
# toke_x[sdo == 0] = self.tokenizer.pad_token_id
return word_embs
def embed_tokens(self, input_ids: T.Tensor, attention_mask: T.Tensor):
y: BaseModelOutputWithPoolingAndCrossAttentions
y = self.token_model(input_ids, attention_mask=attention_mask)
z = y.last_hidden_state
return z
def forward(
self,
toke_x : T.Tensor,
char_x : T.Tensor,
diac_x : T.Tensor,
subword_lengths : T.Tensor,
):
#^ toke_x : [b tt]
#^ char_x : [b tw tc]
#^ diac_x/labels : [b tw tc]
#^ subword_lengths : [b, tw]
# !TODO Use `subword_lengths` to aggregate subword embeddings first before ...
# ... passing concatenated contextual embedding to chars in diac_model
token_nonpad_mask = toke_x.ne(self.tokenizer.pad_token_id)
char_nonpad_mask = char_x.ne(0)
Nb, Tw, Tc = char_x.shape
# assert Tw == Tw_0 and Tc == Tc_0, f"{Tw=} {Tw_0=}, {Tc=} {Tc_0=}"
# toke_x = self.token_dropout(toke_x)
token_embs = self.embed_tokens(toke_x, attention_mask=token_nonpad_mask)
# token_embs = self.sentence_dropout(token_embs)
#? Strip BOS,EOS
token_embs = token_embs[:, 1:-1, ...]
sent_word_strides = subword_lengths.cumsum(1)
sent_enc: T.Tensor = T.zeros(Nb, Tw, token_embs.shape[-1]).to(token_embs)
for i_b in range(Nb):
token_embs_ib = token_embs[i_b]
start_iw = 0
for i_word, end_iw in enumerate(sent_word_strides[i_b]):
if end_iw == start_iw: break
word_emb = token_embs_ib[start_iw : end_iw].sum(0) / (end_iw - start_iw)
sent_enc[i_b, i_word] = word_emb
start_iw = end_iw
#^ sent_enc: [b tw dwe]
char_x_flat = char_x.reshape(Nb*Tw, Tc)
char_nonpad_mask = char_x_flat.gt(0)
# ^ char_nonpad_mask [b*tw tc]
char_x_flat = char_x_flat * char_nonpad_mask
cembs = self.char_embs(char_x_flat)
#^ cembs: [b*tw tc dce]
wembs = sent_enc.unsqueeze(-2).expand(Nb, Tw, Tc, -1).view(Nb*Tw, Tc, -1)
#^ wembs: [b tw dwe] => [b tw _ dwe] => [b*tw tc dwe]
cw_embs = T.cat([cembs, wembs], dim=-1)
#^ char_embs : [b*tw tc dcw] ; dcw = dc + dwe
cw_embs = self.dropout(cw_embs)
cw_embs_ = cw_embs
if self.down_project_token_embeds is not None:
cw_embs_ = self.down_project_token_embeds(cw_embs)
if self.down_project_token_embeds_deep is not None:
cw_embs_ = cw_embs_ + self.down_project_token_embeds_deep(cw_embs)
cw_embs = cw_embs_
diac_enc: BaseModelOutputWithPoolingAndCrossAttentions
diac_enc = self.diac_emb_model(inputs_embeds=cw_embs, attention_mask=char_nonpad_mask)
diac_emb = diac_enc.last_hidden_state
diac_emb = self.dropout(diac_emb)
#^ diac_emb: [b*tw tc dce]
diac_emb = diac_emb.view(Nb, Tw, Tc, -1)
sent_residual = sent_enc.unsqueeze(2).expand(-1, -1, Tc, -1)
final_feature = T.cat([sent_residual, diac_emb], dim=-1)
if self.final_feature_transform is not None:
final_feature = self.final_feature_transform(final_feature)
final_feature = F.tanh(final_feature)
final_feature = self.dropout(final_feature)
else:
final_feature = diac_emb
# final_feature = self.feature_layer_norm(final_feature)
diac_out = self.classifier(final_feature)
# if T.isnan(diac_out).any():
# breakpoint()
return diac_out
def predict(self, dataloader):
from tqdm import tqdm
import diac_utils as du
training = self.training
self.eval()
preds = {'haraka': [], 'shadda': [], 'tanween': []}
print("> Predicting...")
for inputs, _, subword_lengths in tqdm(dataloader, total=len(dataloader)):
inputs[0] = inputs[0].to(self.device)
inputs[1] = inputs[1].to(self.device)
output = self(*inputs, subword_lengths).detach()
marks = np.argmax(T.softmax(output, dim=-1).cpu().numpy(), axis=-1)
#^ [b ts tw]
haraka, tanween, shadda = du.flat_2_3head(marks)
preds['haraka'].extend(haraka)
preds['tanween'].extend(tanween)
preds['shadda'].extend(shadda)
self.train(training)
return (
np.array(preds['haraka']),
np.array(preds["tanween"]),
np.array(preds["shadda"]),
)
if __name__ == "__main__":
model = Diacritizer({
"num-chars": 36,
"hidden_size": 768,
"char-embed-dim": 32,
"dropout": 0.25,
"sentence_dropout": 0.2,
"diac_model_config": {
"num_layers": 4,
"hidden_size": 768 + 32,
"intermediate_size": (768 + 32) * 4,
},
}, load_pretrained=False)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(model)
print(f"{trainable_params:,}/{total_params:,} Trainable Parameters") |