File size: 9,621 Bytes
d36d50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import pickle
import numpy as np
from tqdm import tqdm
from prettytable import PrettyTable
from pyarabic.araby import tokenize, strip_tashkeel
import diac_utils as du
class DatasetUtils:
def __init__(self, config):
self.base_path = config["paths"]["base"]
self.special_tokens = ['<pad>', '<unk>', '<num>', '<punc>']
self.delimeters = config["sentence-break"]["delimeters"]
self.load_constants(config["paths"]["constants"])
self.debug = config["debug"]
self.stride = config["sentence-break"]["stride"]
self.window = config["sentence-break"]["window"]
self.val_stride = config["sentence-break"].get("val-stride", self.stride)
self.test_stride = config["predictor"]["stride"]
self.test_window = config["predictor"]["window"]
self.max_word_len = config["train"]["max-word-len"]
self.max_sent_len = config["train"]["max-sent-len"]
self.max_token_count = config["train"]["max-token-count"]
self.pad_target_val = -100
self.pad_char_id = du.LETTER_LIST.index('<pad>')
self.markov_signal = config['train'].get('markov-signal', False)
self.batch_first = config['train'].get('batch-first', True)
self.gt_prob = config["predictor"]["gt-signal-prob"]
if self.gt_prob > 0:
self.s_idx = config["predictor"]["seed-idx"]
subpath = f"test_gt_mask_{self.gt_prob}_{self.s_idx}.txt"
mask_path = os.path.join(self.base_path, "test", subpath)
with open(mask_path, 'r') as fin:
self.gt_mask = fin.readlines()
if "word-embs" in config["paths"] and config["paths"]["word-embs"].strip() != "":
self.pad_val = self.special_tokens.index("<pad>")
self.embeddings, self.vocab = self.load_embeddings(config["paths"]["word-embs"], config["loader"]["wembs-limit"])
self.embeddings = self.normalize(self.embeddings, ["unit", "centeremb", "unit"])
self.w2idx = {word: i for i, word in enumerate(self.vocab)}
def load_file(self, path):
with open(path, 'rb') as f:
return list(pickle.load(f))
def normalize(self, matrix, actions, mean=None):
def length_normalize(matrix):
norms = np.sqrt(np.sum(matrix**2, axis=1))
norms[norms == 0] = 1
matrix = matrix / norms[:, np.newaxis]
return matrix
def mean_center(matrix):
return matrix - mean
def length_normalize_dimensionwise(matrix):
norms = np.sqrt(np.sum(matrix**2, axis=0))
norms[norms == 0] = 1
matrix = matrix / norms
return matrix
def mean_center_embeddingwise(matrix):
avg = np.mean(matrix, axis=1)
matrix = matrix - avg[:, np.newaxis]
return matrix
for action in actions:
if action == 'unit':
matrix = length_normalize(matrix)
elif action == 'center':
matrix = mean_center(matrix)
elif action == 'unitdim':
matrix = length_normalize_dimensionwise(matrix)
elif action == 'centeremb':
matrix = mean_center_embeddingwise(matrix)
return matrix
def load_constants(self, path):
# self.numbers = [c for c in "0123456789"]
# self.letter_list = self.special_tokens + self.load_file(os.path.join(path, 'ARABIC_LETTERS_LIST.pickle'))
# self.diacritic_list = [' '] + self.load_file(os.path.join(path, 'DIACRITICS_LIST.pickle'))
self.numbers = du.NUMBERS
self.letter_list = du.LETTER_LIST
self.diacritic_list = du.DIACRITICS_SHORT
def split_word_on_characters_with_diacritics(self, word: str):
return du.split_word_on_characters_with_diacritics(word)
def load_mapping_v3(self, dtype, file_ext=None):
mapping = {}
if file_ext is None:
file_ext = f"-{self.test_stride}-{self.test_window}.map"
f_name = os.path.join(self.base_path, dtype, dtype + file_ext)
with open(f_name, 'r') as fin:
for line in fin:
sent_idx, seg_idx, t_idx, c_idx = map(int, line.split(','))
if sent_idx not in mapping:
mapping[sent_idx] = {}
if seg_idx not in mapping[sent_idx]:
mapping[sent_idx][seg_idx] = {}
if t_idx not in mapping[sent_idx][seg_idx]:
mapping[sent_idx][seg_idx][t_idx] = []
mapping[sent_idx][seg_idx][t_idx] += [c_idx]
return mapping
def load_mapping_v3_from_list(self, mapping_list):
mapping = {}
for line in mapping_list:
sent_idx, seg_idx, t_idx, c_idx = map(int, line.split(','))
if sent_idx not in mapping:
mapping[sent_idx] = {}
if seg_idx not in mapping[sent_idx]:
mapping[sent_idx][seg_idx] = {}
if t_idx not in mapping[sent_idx][seg_idx]:
mapping[sent_idx][seg_idx][t_idx] = []
mapping[sent_idx][seg_idx][t_idx] += [c_idx]
return mapping
def load_embeddings(self, embs_path, limit=-1):
if self.debug:
return np.zeros((200+len(self.special_tokens),300)), self.special_tokens + ["c"] * 200
words = [self.special_tokens[0]]
print(f"[INFO] Reading Embeddings from {embs_path}")
with open(embs_path, encoding='utf-8', mode='r') as fin:
n, d = map(int, fin.readline().split())
limit = n if limit <= 0 else limit
embeddings = np.zeros((limit+1, d))
for i, line in tqdm(enumerate(fin), total=limit):
if i >= limit: break
tokens = line.rstrip().split()
words += [tokens[0]]
embeddings[i+1] = list(map(float, tokens[1:]))
return embeddings, words
def load_file_clean(self, dtype, strip=False):
f_name = os.path.join(self.base_path, dtype, dtype + ".txt")
with open(f_name, 'r', encoding="utf-8", newline='\n') as fin:
if strip:
original_lines = [strip_tashkeel(self.preprocess(line)) for line in fin.readlines()]
else:
original_lines = [self.preprocess(line) for line in fin.readlines()]
return original_lines
def preprocess(self, line):
return ' '.join(tokenize(line))
def pad_and_truncate_sequence(self, tokens, max_len, pad=None):
if pad is None:
pad = self.special_tokens.index("<pad>")
if len(tokens) < max_len:
offset = max_len - len(tokens)
return tokens + [pad] * offset
else:
return tokens[:max_len]
def stats(self, freq, percentile=90, name="stats"):
table = PrettyTable(["Dataset", "Mean", "Std", "Min", "Max", f"{percentile}th Percentile"])
freq = np.array(sorted(freq))
table.add_row([name, freq.mean(), freq.std(), freq.min(), freq.max(), np.percentile(freq, percentile)])
print(table)
def create_gt_mask(self, lines, prob, idx, seed=1111):
np.random.seed(seed)
gt_masks = []
for line in lines:
tokens = tokenize(line.strip())
gt_mask_token = ""
for t_idx, token in enumerate(tokens):
gt_mask_token += ''.join(map(str, np.random.binomial(1, prob, len(token))))
if t_idx+1 < len(tokens):
gt_mask_token += " "
gt_masks += [gt_mask_token]
subpath = f"test_gt_mask_{prob}_{idx}.txt"
mask_path = os.path.join(self.base_path, "test", subpath)
with open(mask_path, 'w') as fout:
fout.write('\n'.join(gt_masks))
def create_gt_labels(self, lines):
gt_labels = []
for line in lines:
gt_labels_line = []
tokens = tokenize(line.strip())
for w_idx, word in enumerate(tokens):
split_word = self.split_word_on_characters_with_diacritics(word)
_, cy_flat, _ = du.create_label_for_word(split_word)
gt_labels_line.extend(cy_flat)
if w_idx+1 < len(tokens):
gt_labels_line += [0]
gt_labels += [gt_labels_line]
return gt_labels
def get_ce(self, diac_word_y, e_idx=None, return_idx=False):
#^ diac_word_y: [Tw 3]
if e_idx is None: e_idx = len(diac_word_y)
for c_idx in reversed(range(e_idx)):
if diac_word_y[c_idx] != [0,0,0]:
return diac_word_y[c_idx] if not return_idx else c_idx
return diac_word_y[e_idx-1] if not return_idx else e_idx-1
def create_decoder_input(self, diac_code_y, prob=0):
#^ diac_code_y: [Ts Tw 3]
diac_code_x = np.zeros((*np.array(diac_code_y).shape[:-1], 8))
if not self.markov_signal:
return list(diac_code_x)
prev_ce = list(np.eye(6)[-1]) + [0,0] # bos tag
for w_idx, word in enumerate(diac_code_y):
diac_code_x[w_idx, 0, :] = prev_ce
for c_idx, char in enumerate(word[:-1]):
# if np.random.rand() < prob:
# continue
if char[0] == self.pad_target_val:
break
haraka = list(np.eye(6)[char[0]])
diac_code_x[w_idx, c_idx+1, :] = haraka + char[1:]
ce = self.get_ce(diac_code_y[w_idx], c_idx)
prev_ce = list(np.eye(6)[ce[0]]) + ce[1:]
return list(diac_code_x) |