File size: 6,621 Bytes
d36d50b 5d95780 d36d50b 5d95780 d800c0d d36d50b cd87bdb d36d50b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from typing import Iterable, Union, Tuple
from collections import Counter
import argparse
import os
import yaml
from pyarabic.araby import tokenize, strip_tatweel
from tqdm import tqdm
import numpy as np
import torch as T
from torch.utils.data import DataLoader
from diac_utils import HARAKAT_MAP, shakkel_char, diac_ids_of_line
from model_partial import PartialDD
from model_dd import DiacritizerD2
from data_utils import DatasetUtils
from dataloader import DataRetriever
from segment import segment
class Predictor:
def __init__(self, config, text):
self.data_utils = DatasetUtils(config)
vocab_size = len(self.data_utils.letter_list)
word_embeddings = self.data_utils.embeddings
stride = config["segment"]["stride"]
window = config["segment"]["window"]
min_window = config["segment"]["min-window"]
segments, mapping = segment([text], stride, window, min_window)
mapping_lines = []
for sent_idx, seg_idx, word_idx, char_idx in mapping:
mapping_lines += [f"{sent_idx}, {seg_idx}, {word_idx}, {char_idx}"]
self.mapping = self.data_utils.load_mapping_v3_from_list(mapping_lines)
self.original_lines = [text]
self.segments = segments
self.device = T.device(
config['predictor'].get('device', 'cuda:0')
if T.cuda.is_available() else 'cpu'
)
self.model = DiacritizerD2(config)
self.model.build(word_embeddings, vocab_size)
state_dict = T.load(config["paths"]["load"], map_location=T.device(self.device))['state_dict']
self.model.load_state_dict(state_dict)
self.model.to(self.device)
self.model.eval()
self.data_loader = DataLoader(
DataRetriever(self.data_utils, segments),
batch_size=config["predictor"].get("batch-size", 32),
shuffle=False,
num_workers=config['loader'].get('num-workers', 0),
)
class PredictTri(Predictor):
def __init__(self, config, text):
super().__init__(config, text)
self.diacritics = {
"FATHA": 1,
"KASRA": 2,
"DAMMA": 3,
"SUKUN": 4
}
self.votes: Union[Counter[int], Counter[bool]] = Counter()
def count_votes(
self,
things: Union[Iterable[int], Iterable[bool]]
):
self.votes.clear()
self.votes.update(things)
return self.votes.most_common(1)[0][0]
def predict_majority_vote(self):
y_gen_diac, y_gen_tanween, y_gen_shadda = self.model.predict(self.data_loader)
diacritized_lines, _ = self.coalesce_votes_by_majority(y_gen_diac, y_gen_tanween, y_gen_shadda)
return diacritized_lines
def predict_majority_vote_context_contrastive(self, overwrite_cache=False):
assert isinstance(self.model, PartialDD)
if not os.path.exists("dataset/cache/y_gen_diac.npy") or overwrite_cache:
if not os.path.exists("dataset/cache"):
os.mkdir("dataset/cache")
# segment_outputs = self.model.predict_partial(self.data_loader, return_extra=True)
segment_outputs = self.model.predict_partial(self.data_loader, return_extra=False, eval_only='ctxt')
T.save(segment_outputs, "dataset/cache/cache.pt")
else:
segment_outputs = T.load("dataset/cache/cache.pt")
y_gen_diac, y_gen_tanween, y_gen_shadda = segment_outputs['diacritics']
diacritized_lines, extra_for_lines = self.coalesce_votes_by_majority(
y_gen_diac, y_gen_tanween, y_gen_shadda,
)
extra_out = {
'line_data': {
**extra_for_lines,
},
'segment_data': {
**segment_outputs,
# 'logits': segment_outputs['logits'],
}
}
return diacritized_lines, extra_out
def coalesce_votes_by_majority(
self,
y_gen_diac: np.ndarray,
y_gen_tanween: np.ndarray,
y_gen_shadda: np.ndarray,
):
prepped_lines_og = [' '.join(tokenize(strip_tatweel(line))) for line in self.original_lines]
max_line_chars = max(len(line) for line in prepped_lines_og)
diacritics_pred = np.full((len(self.original_lines), max_line_chars), fill_value=-1, dtype=int)
count_processed_sents = 0
do_break = False
diacritized_lines = []
for sent_idx, line in enumerate(tqdm(prepped_lines_og)):
count_processed_sents = sent_idx + 1
line = line.strip()
diacritized_line = ""
for char_idx, char in enumerate(line):
diacritized_line += char
char_vote_diacritic = []
# ? This is the voting part
if sent_idx not in self.mapping:
continue
mapping_s_i = self.mapping[sent_idx]
for seg_idx in mapping_s_i:
if self.data_utils.debug and seg_idx >= 256:
do_break = True
break
mapping_g_i = mapping_s_i[seg_idx]
for t_idx in mapping_g_i:
mapping_t_i = mapping_g_i[t_idx]
if char_idx in mapping_t_i:
c_idx = mapping_t_i.index(char_idx)
output_idx = np.s_[seg_idx, t_idx, c_idx]
diac_h3 = (y_gen_diac[output_idx], y_gen_tanween[output_idx], y_gen_shadda[output_idx])
diac_char_i = HARAKAT_MAP.index(diac_h3)
if c_idx < 13 and diac_char_i != 0:
char_vote_diacritic.append(diac_char_i)
if do_break:
break
if len(char_vote_diacritic) > 0:
char_mv_diac = self.count_votes(char_vote_diacritic)
diacritized_line += shakkel_char(*HARAKAT_MAP[char_mv_diac])
diacritics_pred[sent_idx, char_idx] = char_mv_diac
else:
diacritics_pred[sent_idx, char_idx] = 0
if do_break:
break
diacritized_lines += [diacritized_line.strip()]
print(f'[INFO] Cutting stats from {len(diacritics_pred)} to {count_processed_sents}')
extra = {
'diac_pred': diacritics_pred[:count_processed_sents],
}
return diacritized_lines, extra |