File size: 6,018 Bytes
d36d50b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
from typing import (
    Tuple,
    List,
    Union,
    Dict,
    Optional,
    Callable,
)
from collections import namedtuple
from abc import ABC, abstractmethod

import torch as T
from torch import nn
from torch.nn import functional as F

from torch import Tensor

import pdb

from dataclasses import dataclass


class IRecurrentCell(ABC, nn.Module):
    @abstractmethod
    def get_init_state(self, input: Tensor):
        pass
    
    @abstractmethod
    def loop(self, inputs, state_t0, mask=None):
        pass

    # def forward(self, input, state, mask=None):
    #     pass

@dataclass
class IRecurrentCellBuilder(ABC):
    hidden_size: int

    def make(self, input_size: int) -> IRecurrentCell:
        pass

    def make_scripted(self, *p, **ks) -> IRecurrentCell:
        return T.jit.script(self.make(*p, **ks))

class RecurrentLayer(nn.Module):
    def reorder_inputs(self, inputs: Union[List[T.Tensor], T.Tensor]):
        #^ inputs : [t b i]
        if self.direction == 'backward':
            return inputs[::-1]
        return inputs

    def __init__(
            self,
            cell: IRecurrentCell,
            direction='forward',
            batch_first=False,
    ):
        super().__init__()
        if isinstance(batch_first, bool):
            batch_first = (batch_first, batch_first)
        self.batch_first = batch_first
        self.direction = direction
        self.cell_: IRecurrentCell = cell

    @T.jit.ignore
    def forward(self, input, state_t0, return_state=None):
        if self.batch_first[0]:
        #^ input : [b t i]
            input = input.transpose(1, 0)
        #^ input : [t b i]
        inputs = input.unbind(0)

        if state_t0 is None:
            state_t0 = self.cell_.get_init_state(input)
    
        inputs = self.reorder_inputs(inputs)

        if return_state:
            sequence, state = self.cell_.loop(inputs, state_t0)
        else:
            sequence, _ = self.cell_.loop(inputs, state_t0)
        #^ sequence : t * [b h]
        sequence = self.reorder_inputs(sequence)
        sequence = T.stack(sequence)
        #^ sequence : [t b h]

        if self.batch_first[1]:
            sequence = sequence.transpose(1, 0)
        #^ sequence : [b t h]  

        if return_state:
            return sequence, state
        else:
            return sequence, None

class BidirectionalRecurrentLayer(nn.Module):
    def __init__(
            self,
            input_size: int,
            cell_builder: IRecurrentCellBuilder,
            batch_first=False,
            return_states=False
    ):
        super().__init__()
        self.batch_first = batch_first
        self.cell_builder = cell_builder
        self.batch_first = batch_first
        self.return_states = return_states
        self.fwd = RecurrentLayer(
            cell_builder.make_scripted(input_size),
            direction='forward',
            batch_first=batch_first
        )
        self.bwd = RecurrentLayer(
            cell_builder.make_scripted(input_size),
            direction='backward',
            batch_first=batch_first
        )

    @T.jit.ignore
    def forward(self, input, state_t0, is_last):
        return_states = is_last and self.return_states
        if return_states:
            fwd, state_fwd = self.fwd(input, state_t0, return_states)
            bwd, state_bwd = self.bwd(input, state_t0, return_states)
            return T.cat([fwd, bwd], dim=-1), (T.cat([state_fwd[0], state_bwd[0]], dim=-1), T.cat([state_fwd[1], state_bwd[1]], dim=-1))
        else:
            fwd, _ = self.fwd(input, state_t0, return_states)
            bwd, _ = self.bwd(input, state_t0, return_states)
            return T.cat([fwd, bwd], dim=-1), None

class RecurrentLayerStack(nn.Module):
    def __init__(
            self,
            cell_builder  : Callable[..., IRecurrentCellBuilder],
            input_size    : int,
            num_layers    : int,
            bidirectional : bool = False,
            batch_first   : bool = False,
            scripted      : bool = True,
            return_states : bool = False,
            *args, **kargs,
    ):
        super().__init__()
        cell_builder_: IRecurrentCellBuilder = cell_builder(*args, **kargs)
        self._cell_builder = cell_builder_

        if bidirectional:
            Dh = cell_builder_.hidden_size * 2
            def make(isize: int, last=False):
                return BidirectionalRecurrentLayer(isize, cell_builder_,
                            batch_first=batch_first, return_states=return_states)
        else:
            Dh = cell_builder_.hidden_size
            def make(isize: int, last=False):
                cell = cell_builder_.make_scripted(isize)
                return RecurrentLayer(cell, isize,
                            batch_first=batch_first)


        if num_layers > 1:
            rnns = [
                make(input_size),
                *[
                    make(Dh)
                    for _ in range(num_layers - 2)
                ],
                make(Dh, last=True)
            ]
        else:
            rnns = [make(input_size, last=True)]

        self.rnn = nn.Sequential(*rnns)

        self.input_size = input_size
        self.hidden_size = self._cell_builder.hidden_size
        self.num_layers = num_layers
        self.bidirectional = bidirectional
        self.return_states = return_states

    def __repr__(self):
        return (
            f'${self.__class__.__name__}'
            + '('
            + f'in={self.input_size}, '
            + f'hid={self.hidden_size}, '
            + f'layers={self.num_layers}, '
            + f'bi={self.bidirectional}'
            + '; '
            + str(self._cell_builder)
        )

    def forward(self, input, state_t0=None):
        for layer_idx, rnn in enumerate(self.rnn):
            is_last = (layer_idx == (len(self.rnn) - 1))
            input, state = rnn(input, state_t0, is_last) 
        if self.return_states:
            return input, state  
        return input