chan4lk commited on
Commit
8f2aac0
·
1 Parent(s): a0315da

chat history added

Browse files
Files changed (1) hide show
  1. app.py +26 -6
app.py CHANGED
@@ -7,7 +7,6 @@ import soundfile as sf
7
  from pdfminer.high_level import extract_text
8
  from llama_cpp import Llama
9
 
10
-
11
  # Check if MPS is available and set the device
12
  if torch.backends.mps.is_available():
13
  device = torch.device("mps")
@@ -26,7 +25,12 @@ def toText(audio):
26
  return question
27
 
28
 
 
 
 
29
  def extract_answer(question, text):
 
 
30
  # Load the LLaMA model
31
  model_path="/Users/chandima/.cache/lm-studio/models/lmstudio-community/Llama-3.2-3B-Instruct-GGUF/Llama-3.2-3B-Instruct-Q3_K_L.gguf"
32
  # Load the LLaMA model with MPS acceleration
@@ -40,21 +44,28 @@ def extract_answer(question, text):
40
  use_mmap=True, # Optional: for faster loading
41
  )
42
 
 
 
 
43
  # Use LLaMA to extract skills
44
  prompt = f"""
45
- Answer the question based on the Resume.
 
 
46
 
47
- Question:
48
- {question}:
49
 
50
  Resume:
51
  {text}
52
 
53
- Answer:
54
- """
55
 
56
  response = llm(prompt, max_tokens=800, stop=["Human:", "\n\n"])
57
  answer = response['choices'][0]['text'].strip()
 
 
 
 
58
  print(answer)
59
  return answer
60
 
@@ -79,6 +90,11 @@ def clone(audio, file):
79
  def start_recording():
80
  return None
81
 
 
 
 
 
 
82
  with gr.Blocks() as iface:
83
  with gr.Row():
84
  audio_input = gr.Audio(sources="microphone", type="filepath", label='Question from Resume')
@@ -96,4 +112,8 @@ with gr.Blocks() as iface:
96
  # Add event to start recording after output audio finishes
97
  output.play(fn=start_recording, outputs=audio_input)
98
 
 
 
 
 
99
  iface.launch()
 
7
  from pdfminer.high_level import extract_text
8
  from llama_cpp import Llama
9
 
 
10
  # Check if MPS is available and set the device
11
  if torch.backends.mps.is_available():
12
  device = torch.device("mps")
 
25
  return question
26
 
27
 
28
+ # Global variable to store chat history
29
+ chat_history = []
30
+
31
  def extract_answer(question, text):
32
+ global chat_history
33
+
34
  # Load the LLaMA model
35
  model_path="/Users/chandima/.cache/lm-studio/models/lmstudio-community/Llama-3.2-3B-Instruct-GGUF/Llama-3.2-3B-Instruct-Q3_K_L.gguf"
36
  # Load the LLaMA model with MPS acceleration
 
44
  use_mmap=True, # Optional: for faster loading
45
  )
46
 
47
+ # Construct the conversation history
48
+ conversation = "\n".join([f"Human: {q}\nAI: {a}" for q, a in chat_history])
49
+
50
  # Use LLaMA to extract skills
51
  prompt = f"""
52
+ You are an AI assistant answering questions based on a resume. Here's the conversation so far:
53
+
54
+ {conversation}
55
 
56
+ Human: {question}
 
57
 
58
  Resume:
59
  {text}
60
 
61
+ AI: """
 
62
 
63
  response = llm(prompt, max_tokens=800, stop=["Human:", "\n\n"])
64
  answer = response['choices'][0]['text'].strip()
65
+
66
+ # Append the new question and answer to the chat history
67
+ chat_history.append((question, answer))
68
+
69
  print(answer)
70
  return answer
71
 
 
90
  def start_recording():
91
  return None
92
 
93
+ def reset_conversation():
94
+ global chat_history
95
+ chat_history = []
96
+ return None
97
+
98
  with gr.Blocks() as iface:
99
  with gr.Row():
100
  audio_input = gr.Audio(sources="microphone", type="filepath", label='Question from Resume')
 
112
  # Add event to start recording after output audio finishes
113
  output.play(fn=start_recording, outputs=audio_input)
114
 
115
+ # Add a button to reset the conversation
116
+ reset_btn = gr.Button("Reset Conversation")
117
+ reset_btn.click(fn=reset_conversation, inputs=None, outputs=None)
118
+
119
  iface.launch()