Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,77 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
text = 'running speech to text'
|
11 |
-
return text
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
return 'running text to sentiment'
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
b2 = gr.Button("Classify Sentiment")
|
27 |
|
28 |
-
b1.click(speech_to_text, inputs=audio_file, outputs=text)
|
29 |
-
b2.click(text_to_sentiment, inputs=text, outputs=label)
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
|
|
2 |
import gradio as gr
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
def parse_video(video_file):
|
9 |
+
"""A utility to parse the input videos.
|
10 |
+
Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
|
11 |
+
"""
|
12 |
+
vs = cv2.VideoCapture(video_file)
|
13 |
|
14 |
+
# try to determine the total number of frames in the video file
|
15 |
+
try:
|
16 |
+
prop = (
|
17 |
+
cv2.cv.CV_CAP_PROP_FRAME_COUNT
|
18 |
+
if imutils.is_cv2()
|
19 |
+
else cv2.CAP_PROP_FRAME_COUNT
|
20 |
+
)
|
21 |
+
total = int(vs.get(prop))
|
22 |
+
print("[INFO] {} total frames in video".format(total))
|
23 |
|
24 |
+
# an error occurred while trying to determine the total
|
25 |
+
# number of frames in the video file
|
26 |
+
except:
|
27 |
+
print("[INFO] could not determine # of frames in video")
|
28 |
+
print("[INFO] no approx. completion time can be provided")
|
29 |
+
total = -1
|
30 |
|
31 |
+
frames = []
|
|
|
|
|
32 |
|
33 |
+
# loop over frames from the video file stream
|
34 |
+
while True:
|
35 |
+
# read the next frame from the file
|
36 |
+
(grabbed, frame) = vs.read()
|
37 |
+
if frame is not None:
|
38 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
+
frames.append(frame)
|
40 |
+
# if the frame was not grabbed, then we have reached the end
|
41 |
+
# of the stream
|
42 |
+
if not grabbed:
|
43 |
+
break
|
44 |
|
45 |
+
return frames
|
|
|
46 |
|
47 |
+
def pil_parser(frames):
|
48 |
+
X = []
|
49 |
+
frames = np.arange(2,62,2)
|
50 |
+
use_transform : transforms.Compose =transforms.Compose([transforms.Resize([256, 342]),
|
51 |
+
transforms.ToTensor(),
|
52 |
+
transforms.Normalize(mean=[0.5], std=[0.5])])
|
53 |
|
54 |
+
for i in frames:
|
55 |
+
image = Image.fromarray(dummy_frames[i]).convert('L')
|
56 |
|
57 |
+
if use_transform is not None:
|
58 |
+
image = use_transform(image)
|
59 |
+
else:
|
60 |
+
image = transforms.ToTensor()(image)
|
61 |
+
X.append(image)
|
62 |
+
X = torch.stack(X, dim=1).unsqueeze(0)
|
63 |
|
64 |
+
return str(X.shape)
|
|
|
65 |
|
|
|
|
|
66 |
|
67 |
+
gr.Interface(
|
68 |
+
fn=infer,
|
69 |
+
inputs=gr.Video(),
|
70 |
+
outputs=['text'],
|
71 |
+
title="Viscosity Regression From Video Data",
|
72 |
+
description=(
|
73 |
+
"Gradio demo for Video Regression"
|
74 |
+
),
|
75 |
+
allow_flagging='never',
|
76 |
+
|
77 |
+
).launch()
|