Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,260 @@ import numpy as np
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import torchvision.transforms as transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
def load_model():
|
|
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
import torchvision.transforms as transforms
|
8 |
+
from typing import NamedTuple, List, Callable, List, Tuple, Optional
|
9 |
+
from torch import nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
class LinData(NamedTuple):
|
13 |
+
in_dim : int # input dimension
|
14 |
+
hidden_layers : List[int] # hidden layers including the output layer
|
15 |
+
activations : List[Optional[Callable[[torch.Tensor],torch.Tensor]]] # list of activations
|
16 |
+
bns : List[bool] # list of bools
|
17 |
+
dropouts : List[Optional[float]] # list of dropouts probas
|
18 |
+
|
19 |
+
class CNNData(NamedTuple):
|
20 |
+
in_dim : int # input dimension
|
21 |
+
n_f : List[int] # num filters
|
22 |
+
kernel_size : List[Tuple] # kernel size [(5,5,5), (3,3,3),(3,3,3)]
|
23 |
+
activations : List[Optional[Callable[[torch.Tensor],torch.Tensor]]] # activation list
|
24 |
+
bns : List[bool] # batch normialization [True, True, False]
|
25 |
+
dropouts : List[Optional[float]] # # list of dropouts probas [.5,0,0]
|
26 |
+
#dropouts_ps : list # [0.5,.7, 0]
|
27 |
+
paddings : List[Optional[Tuple]] #[(0,0,0),(0,0,0), (0,0,0)]
|
28 |
+
strides : List[Optional[Tuple]] #[(1,1,1),(1,1,1),(1,1,1)]
|
29 |
+
|
30 |
+
|
31 |
+
class NetData(NamedTuple):
|
32 |
+
cnn3d : CNNData
|
33 |
+
lin : LinData
|
34 |
+
|
35 |
+
class CNN3D_Mike(nn.Module):
|
36 |
+
def __init__(self, t_dim=30, img_x=256 , img_y=342, drop_p=0, fc_hidden1=256, fc_hidden2=256):
|
37 |
+
super(CNN3D_Mike, self).__init__() # set video dimension
|
38 |
+
self.t_dim = t_dim
|
39 |
+
self.img_x = img_x
|
40 |
+
self.img_y = img_y
|
41 |
+
# fully connected layer hidden nodes
|
42 |
+
self.fc_hidden1, self.fc_hidden2 = fc_hidden1, fc_hidden2
|
43 |
+
self.drop_p = drop_p
|
44 |
+
#self.num_classes = num_classes
|
45 |
+
self.ch1, self.ch2 = 32, 48
|
46 |
+
self.k1, self.k2 = (5, 5, 5), (3, 3, 3) # 3d kernel size
|
47 |
+
self.s1, self.s2 = (2, 2, 2), (2, 2, 2) # 3d strides
|
48 |
+
self.pd1, self.pd2 = (0, 0, 0), (0, 0, 0) # 3d padding # compute conv1 & conv2 output shape
|
49 |
+
self.conv1_outshape = conv3D_output_size((self.t_dim, self.img_x, self.img_y), self.pd1, self.k1, self.s1)
|
50 |
+
self.conv2_outshape = conv3D_output_size(self.conv1_outshape, self.pd2, self.k2, self.s2)
|
51 |
+
self.conv1 = nn.Conv3d(in_channels=1, out_channels=self.ch1, kernel_size=self.k1, stride=self.s1,
|
52 |
+
padding=self.pd1)
|
53 |
+
self.bn1 = nn.BatchNorm3d(self.ch1)
|
54 |
+
self.conv2 = nn.Conv3d(in_channels=self.ch1, out_channels=self.ch2, kernel_size=self.k2, stride=self.s2,
|
55 |
+
padding=self.pd2)
|
56 |
+
self.bn2 = nn.BatchNorm3d(self.ch2)
|
57 |
+
self.relu = nn.ReLU(inplace=True)
|
58 |
+
self.drop = nn.Dropout3d(self.drop_p)
|
59 |
+
self.pool = nn.MaxPool3d(2)
|
60 |
+
self.fc1 = nn.Linear(self.ch2*self.conv2_outshape[0]*self.conv2_outshape[1]*self.conv2_outshape[2],
|
61 |
+
self.fc_hidden1) # fully connected hidden layer
|
62 |
+
self.fc2 = nn.Linear(self.fc_hidden1, self.fc_hidden2)
|
63 |
+
self.fc3 = nn.Linear(self.fc_hidden2,1) # fully connected layer, output = multi-classes
|
64 |
+
|
65 |
+
|
66 |
+
def forward(self, x_3d):
|
67 |
+
# Conv 1
|
68 |
+
x = self.conv1(x_3d)
|
69 |
+
|
70 |
+
x = self.bn1(x)
|
71 |
+
x = self.relu(x)
|
72 |
+
x = self.drop(x)
|
73 |
+
# Conv 2
|
74 |
+
x = self.conv2(x)
|
75 |
+
x = self.bn2(x)
|
76 |
+
x = self.relu(x)
|
77 |
+
x = self.drop(x)
|
78 |
+
# FC 1 and 2
|
79 |
+
x = x.view(x.size(0), -1)
|
80 |
+
x = F.relu(self.fc1(x))
|
81 |
+
x = F.relu(self.fc2(x))
|
82 |
+
|
83 |
+
#x = F.relu(self.fc3(x))
|
84 |
+
#x = F.relu(self.fc3(x))
|
85 |
+
x = F.dropout(x, p=self.drop_p, training=self.training)
|
86 |
+
#x = self.fc3(x)
|
87 |
+
#x = F.softmax(self.fc2(x))
|
88 |
+
|
89 |
+
x = self.fc3(x)
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
class CNNLayers(nn.Module):
|
98 |
+
|
99 |
+
def __init__(self, args):
|
100 |
+
|
101 |
+
super(CNNLayers, self).__init__()
|
102 |
+
|
103 |
+
self.in_dim = args.in_dim# 1/3
|
104 |
+
self.n_f = args.n_f#[32,64]
|
105 |
+
self.kernel_size = args.kernel_size # [(5,5,5), (3,3,3)]
|
106 |
+
self.activations = args.activations#['relu', 'relu']
|
107 |
+
self.bns = args.bns #[True, True],
|
108 |
+
self.dropouts = args.dropouts #[True, True]
|
109 |
+
#self.dropouts_ps = args.dropouts_ps#[0.5,.7]
|
110 |
+
self.paddings = args.paddings #[(0,0,0),(0,0,0)]
|
111 |
+
self.strides = args.strides # strides [(1,1,1),(1,1,1),(1,1,1)])
|
112 |
+
#self.poolings = args.poolings
|
113 |
+
|
114 |
+
assert len(self.n_f) == len(self.activations) == len(self.bns) == len(self.dropouts), 'dimensions mismatch : check dimensions!'
|
115 |
+
|
116 |
+
# generate layers seq of seq
|
117 |
+
self._get_layers()
|
118 |
+
|
119 |
+
def _get_layers(self):
|
120 |
+
|
121 |
+
layers =nn.ModuleList()
|
122 |
+
in_channels = self.in_dim
|
123 |
+
|
124 |
+
for idx, chans in enumerate(self.n_f):
|
125 |
+
sub_layers = nn.ModuleList()
|
126 |
+
|
127 |
+
sub_layers.append(nn.Conv3d(in_channels = in_channels,
|
128 |
+
out_channels = chans, #self.n_f[idx],
|
129 |
+
kernel_size = self.kernel_size[idx],
|
130 |
+
stride = self.strides[idx],
|
131 |
+
padding = self.paddings[idx]
|
132 |
+
))
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
if self.bns[idx] : sub_layers.append(nn.BatchNorm3d(num_features = self.n_f[idx]))
|
137 |
+
|
138 |
+
#if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts_ps[idx]))
|
139 |
+
|
140 |
+
if self.dropouts[idx] : sub_layers.append(nn.Dropout3d(p = self.dropouts[idx]))
|
141 |
+
|
142 |
+
#if self.activations[idx] : sub_layers.append(self.__class__.get_activation(self.activations[idx]))
|
143 |
+
|
144 |
+
if self.activations[idx] : sub_layers.append(self.activations[idx])
|
145 |
+
|
146 |
+
sub_layers = nn.Sequential(*sub_layers)
|
147 |
+
|
148 |
+
layers.append(sub_layers)
|
149 |
+
|
150 |
+
in_channels = self.n_f[idx]
|
151 |
+
|
152 |
+
self.layers = nn.Sequential(*layers)
|
153 |
+
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def get_activation(activation):
|
157 |
+
if activation == 'relu':
|
158 |
+
activation=nn.ReLU()
|
159 |
+
elif activation == 'leakyrelu':
|
160 |
+
activation=nn.LeakyReLU(negative_slope=0.1)
|
161 |
+
elif activation == 'selu':
|
162 |
+
activation=nn.SELU()
|
163 |
+
|
164 |
+
return activation
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
|
170 |
+
x = self.layers(x)
|
171 |
+
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
class CNN3D(nn.Module):
|
177 |
+
|
178 |
+
def __init__(self, args):
|
179 |
+
super(CNN3D,self).__init__()
|
180 |
+
# check datatype
|
181 |
+
if not isinstance(args, NetData):
|
182 |
+
raise TypeError("input must be a ParserClass")
|
183 |
+
|
184 |
+
self.cnn3d = CNNLayers(args.cnn3d)
|
185 |
+
|
186 |
+
self.lin = LinLayers(args.lin)
|
187 |
+
|
188 |
+
self.in_dim = args.lin.in_dim
|
189 |
+
|
190 |
+
|
191 |
+
def forward(self, x):
|
192 |
+
|
193 |
+
# cnn 3d
|
194 |
+
x = self.cnn3d(x)
|
195 |
+
|
196 |
+
x = x.view(-1, self.in_dim)
|
197 |
+
|
198 |
+
# feedforward
|
199 |
+
x = self.lin(x)
|
200 |
+
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
class LinLayers(nn.Module):
|
207 |
+
|
208 |
+
def __init__(self, args):
|
209 |
+
super(LinLayers,self).__init__()
|
210 |
+
|
211 |
+
in_dim= args.in_dim #16,
|
212 |
+
hidden_layers= args.hidden_layers #[512,256,128,2],
|
213 |
+
activations=args.activations#[nn.LeakyReLU(0.2),nn.LeakyReLU(0.2),nn.LeakyReLU(0.2)],
|
214 |
+
batchnorms=args.bns#[True,True,True],
|
215 |
+
dropouts = args.dropouts#[None, 0.2, 0.2]
|
216 |
+
|
217 |
+
|
218 |
+
assert len(hidden_layers) == len(activations) == len(batchnorms) == len(dropouts), 'dimensions mismatch!'
|
219 |
+
|
220 |
+
|
221 |
+
layers=nn.ModuleList()
|
222 |
+
|
223 |
+
if hidden_layers:
|
224 |
+
old_dim=in_dim
|
225 |
+
for idx,layer in enumerate(hidden_layers):
|
226 |
+
sub_layers = nn.ModuleList()
|
227 |
+
sub_layers.append(nn.Linear(old_dim,layer))
|
228 |
+
if batchnorms[idx] : sub_layers.append(nn.BatchNorm1d(num_features=layer))
|
229 |
+
if activations[idx] : sub_layers.append(activations[idx])
|
230 |
+
if dropouts[idx] : sub_layers.append(nn.Dropout(p=dropouts[idx]))
|
231 |
+
old_dim = layer
|
232 |
+
|
233 |
+
sub_layers = nn.Sequential(*sub_layers)
|
234 |
+
|
235 |
+
layers.append(sub_layers)
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
else:# for single layer
|
240 |
+
layers.append(nn.Linear(in_dim,out_dim))
|
241 |
+
if batchnorms : layers.append(nn.BatchNorm1d(num_features=out_dim))
|
242 |
+
if activations : layers.append(activations)
|
243 |
+
if dropouts : layers.append(nn.Dropout(p=dropouts))
|
244 |
+
|
245 |
+
self.layers = nn.Sequential(*layers)
|
246 |
+
|
247 |
+
|
248 |
+
|
249 |
+
def forward(self,x):
|
250 |
+
|
251 |
+
x = self.layers(x)
|
252 |
+
|
253 |
+
return x
|
254 |
+
|
255 |
+
'''
|
256 |
+
def _check_dimensions(self):
|
257 |
+
if isinstance(self.hidden_layers,list) :
|
258 |
+
assert len(self.hidden_layers)==len(self.activations)
|
259 |
+
assert len(self.hidden_layers)==len(self.batchnorms)
|
260 |
+
assert len(self.hidden_layers)==len(self.dropouts)
|
261 |
+
'''
|
262 |
|
263 |
|
264 |
def load_model():
|