DummySpace / app.py
biplab2008's picture
Update app.py
92071a9 verified
import cv2
import gradio as gr
import imutils
import numpy as np
import torch
from PIL import Image
from cnn3d_model import load_model
import torchvision.transforms as transforms
def parse_video(video_file):
"""A utility to parse the input videos.
Reference: https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
"""
vs = cv2.VideoCapture(video_file)
# try to determine the total number of frames in the video file
try:
prop = (
cv2.cv.CV_CAP_PROP_FRAME_COUNT
if imutils.is_cv2()
else cv2.CAP_PROP_FRAME_COUNT
)
total = int(vs.get(prop))
print("[INFO] {} total frames in video".format(total))
# an error occurred while trying to determine the total
# number of frames in the video file
except:
print("[INFO] could not determine # of frames in video")
print("[INFO] no approx. completion time can be provided")
total = -1
frames = []
# loop over frames from the video file stream
while True:
# read the next frame from the file
(grabbed, frame) = vs.read()
if frame is not None:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
return frames
def pil_parser(video_file):
model = load_model()
# cv2 parsing
dummy_frames = parse_video(video_file)
X = []
frames = np.arange(2,62,2)
use_transform : transforms.Compose =transforms.Compose([transforms.Resize([256, 342]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
for i in frames:
image = Image.fromarray(dummy_frames[i]).convert('L')
if use_transform is not None:
image = use_transform(image)
else:
image = transforms.ToTensor()(image)
X.append(image)
X = torch.stack(X, dim=1).unsqueeze(0)
out = model(X)
#return 'shape is : '+ str(X.shape)
return 'viscosity : ' + str(round(out.item(),1)) + ' cp_2'
example_list=[
["2350.mp4"],
["2300.mp4"],
]
gr.Interface(
fn=pil_parser,
inputs=gr.Video(label="Upload a video file"),
outputs="text",
examples=example_list,
title="Viscosity Regression From Video Data",
description=(
"Gradio demo for Video Regression"
),
allow_flagging='never',
).launch()