File size: 4,377 Bytes
8825925
ad30dac
b15d2da
 
 
 
 
e221ffd
4f0b801
 
8bec27a
b15d2da
 
 
 
 
 
 
 
 
 
5024005
b15d2da
 
 
ad30dac
b15d2da
 
 
 
ad30dac
 
 
 
 
 
b15d2da
 
42df8c8
b15d2da
 
ad30dac
b15d2da
 
 
 
 
 
 
 
 
ad30dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b15d2da
 
418fefc
13d6edc
458341b
207d7df
 
 
 
 
 
 
 
 
6cd66c6
 
207d7df
6435858
207d7df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf80da4
 
13d6edc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import yt_dlp
import torch
import gradio as gr
from transformers import pipeline
from huggingface_hub import model_info


# See available models at https://github.com/biodatlab/thonburian-whisper
MODEL_NAME = "biodatlab/distill-whisper-th-large-v3"  # specify the model name here
lang = "th"

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

def transcribe(microphone, file_upload):
    warn_output = ""
    if microphone and file_upload:
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )
        file = microphone
    elif microphone:
        file = microphone
    elif file_upload:
        file = file_upload
    else:
        return "ERROR: You have to either use the microphone or upload an audio file"

    text = pipe(file, generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
    return warn_output + text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def yt_transcribe(yt_url):
    try:
        ydl_opts = {
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'mp3',
                'preferredquality': '192',
            }],
            'outtmpl': 'audio.%(ext)s',
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(yt_url, download=True)
            video_id = info['id']
        
        html_embed_str = _return_yt_html_embed(video_id)
        
        text = pipe("audio.mp3", generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
        
        # Clean up the downloaded file
        os.remove("audio.mp3")
        
        return html_embed_str, text
    except Exception as e:
        return f"Error: {str(e)}", "An error occurred while processing the YouTube video."


with gr.Blocks() as demo:
    gr.Markdown("# Thonburian Whisper Demo 🇹🇭")
    gr.Image(value="thonburian-whisper-logo.png", show_label=False, container=False, width=400)
    
    with gr.Tab("Transcribe Audio"):
        gr.Markdown(
            f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the fine-tuned"
            f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
            f" of arbitrary length."
        )
        with gr.Row():
            with gr.Column():
                audio_mic = gr.Audio(sources=["microphone"], type="filepath", label="Microphone Input")
                audio_file = gr.Audio(sources=["upload"], type="filepath", label="Audio File Upload")
            with gr.Column():
                text_output = gr.Textbox(label="Transcription Output", lines=3)
        transcribe_btn = gr.Button("Transcribe")
        transcribe_btn.click(fn=transcribe, inputs=[audio_mic, audio_file], outputs=text_output)
    
    with gr.Tab("Transcribe YouTube"):
        gr.Markdown(
            f"Transcribe long-form YouTube videos with the click of a button! Demo uses the fine-tuned checkpoint:"
            f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
            f" arbitrary length."
        )
        with gr.Row():
            with gr.Column():
                yt_url_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
            with gr.Column():
                yt_html_output = gr.HTML(label="Video")
                yt_text_output = gr.Textbox(label="Transcription Output")
        yt_transcribe_btn = gr.Button("Transcribe YouTube Video")
        yt_transcribe_btn.click(fn=yt_transcribe, inputs=yt_url_input, outputs=[yt_html_output, yt_text_output])


if __name__ == "__main__":
    demo.queue().launch()