Spaces:
Sleeping
Sleeping
File size: 4,377 Bytes
8825925 ad30dac b15d2da e221ffd 4f0b801 8bec27a b15d2da 5024005 b15d2da ad30dac b15d2da ad30dac b15d2da 42df8c8 b15d2da ad30dac b15d2da ad30dac b15d2da 418fefc 13d6edc 458341b 207d7df 6cd66c6 207d7df 6435858 207d7df bf80da4 13d6edc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
import yt_dlp
import torch
import gradio as gr
from transformers import pipeline
from huggingface_hub import model_info
# See available models at https://github.com/biodatlab/thonburian-whisper
MODEL_NAME = "biodatlab/distill-whisper-th-large-v3" # specify the model name here
lang = "th"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if microphone and file_upload:
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
file = microphone
elif microphone:
file = microphone
elif file_upload:
file = file_upload
else:
return "ERROR: You have to either use the microphone or upload an audio file"
text = pipe(file, generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
try:
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': 'audio.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(yt_url, download=True)
video_id = info['id']
html_embed_str = _return_yt_html_embed(video_id)
text = pipe("audio.mp3", generate_kwargs={"language":"<|th|>", "task":"transcribe"}, batch_size=16)["text"]
# Clean up the downloaded file
os.remove("audio.mp3")
return html_embed_str, text
except Exception as e:
return f"Error: {str(e)}", "An error occurred while processing the YouTube video."
with gr.Blocks() as demo:
gr.Markdown("# Thonburian Whisper Demo 🇹🇭")
gr.Image(value="thonburian-whisper-logo.png", show_label=False, container=False, width=400)
with gr.Tab("Transcribe Audio"):
gr.Markdown(
f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the fine-tuned"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
f" of arbitrary length."
)
with gr.Row():
with gr.Column():
audio_mic = gr.Audio(sources=["microphone"], type="filepath", label="Microphone Input")
audio_file = gr.Audio(sources=["upload"], type="filepath", label="Audio File Upload")
with gr.Column():
text_output = gr.Textbox(label="Transcription Output", lines=3)
transcribe_btn = gr.Button("Transcribe")
transcribe_btn.click(fn=transcribe, inputs=[audio_mic, audio_file], outputs=text_output)
with gr.Tab("Transcribe YouTube"):
gr.Markdown(
f"Transcribe long-form YouTube videos with the click of a button! Demo uses the fine-tuned checkpoint:"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
f" arbitrary length."
)
with gr.Row():
with gr.Column():
yt_url_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
with gr.Column():
yt_html_output = gr.HTML(label="Video")
yt_text_output = gr.Textbox(label="Transcription Output")
yt_transcribe_btn = gr.Button("Transcribe YouTube Video")
yt_transcribe_btn.click(fn=yt_transcribe, inputs=yt_url_input, outputs=[yt_html_output, yt_text_output])
if __name__ == "__main__":
demo.queue().launch() |