from transformers import pipeline, Conversation | |
import gradio as gr | |
#这个Space主要是演示了可以直接使用Huggingface的pipeline构建AIApp,然后还刚好可以和Gradio的ChatInterface对应上! | |
chatbot = pipeline(model="facebook/blenderbot-400M-distill") #Working! | |
#https://huggingface.co/facebook/blenderbot-400M-distill/tree/main | |
#这个模型文件大小:730MB或1.46GB | |
#https://huggingface.co/facebook/blenderbot-400M-distill/tree/main?library=true | |
# Use a pipeline as a high-level helper | |
#from transformers import pipeline | |
#pipe = pipeline("conversational", model="facebook/blenderbot-400M-distill") | |
#chatbot = pipeline(model="HuggingFaceH4/starchat-beta") | |
#https://huggingface.co/HuggingFaceH4/starchat-beta/tree/main | |
#由于这个模型太大了(9.96+9.86+9.86+1.36GB),会导致如下错误: | |
#Runtime error | |
#Memory limit exceeded (16Gi) | |
#chatbot = pipeline(model="...") | |
message_list = [] | |
response_list = [] | |
def vanilla_chatbot(message, history): | |
conversation = Conversation(text=message, past_user_inputs=message_list, generated_responses=response_list) | |
conversation = chatbot(conversation) | |
return conversation.generated_responses[-1] | |
demo_chatbot = gr.ChatInterface(vanilla_chatbot, title="Vanilla Chatbot", description="Enter text to start chatting.") | |
demo_chatbot.launch() |