bigyunicorn commited on
Commit
a644801
Β·
1 Parent(s): 6420339

uploading app.py with all images and my model

Browse files
Files changed (1) hide show
  1. app.py +28 -4
app.py CHANGED
@@ -1,7 +1,31 @@
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: testnbdev.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'iface', 'is_cat', 'classify_image']
5
+
6
+ # %% testnbdev.ipynb 34
7
+ learn = load_learner("model.pkl")
8
+
9
+ # %% testnbdev.ipynb 53
10
+ from fastai.vision.all import *
11
  import gradio as gr
12
 
13
+ def is_cat(x): return x[0].isupper()
14
+
15
+ # %% testnbdev.ipynb 57
16
+ learn = load_learner("model.pkl")
17
+
18
+ # %% testnbdev.ipynb 65
19
+ categories = ('Dog', 'Cat')
20
+
21
+ def classify_image(img):
22
+ pred,idx,probs = learn.predict(img)
23
+ return dict(zip(categories, map(float,probs))) # need to understand this line.
24
+
25
+ # %% testnbdev.ipynb 67
26
+ image = gr.inputs.Image(shape=(192,192))
27
+ label = gr.outputs.Label()
28
+ examples = ["cat.jpg", "dog.jpg", "grizzlybear.jpg", "box.jpg", "boxes.jpg", "dog_and_cat.jpg", "dog_and_cat2.jpg", "dog_and_cat3.png"]
29
 
30
+ iface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
31
+ iface.launch()