Spaces:
Paused
Paused
""" | |
Utils for fetching pretrained model parts. Currently, this relies on huggingface transformers' from_pretrained code. | |
If necessary, one can rewrite this to implement a different behavior, such as: | |
- loading files from a local data source (e.g. S3) | |
- load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to ) | |
- fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html ) | |
""" | |
from __future__ import annotations | |
from typing import Optional, OrderedDict, Union | |
import torch | |
from hivemind.utils.logging import get_logger, use_hivemind_log_handler | |
from transformers.modeling_utils import WEIGHTS_NAME | |
from transformers.utils.hub import cached_path, hf_bucket_url | |
from src.bloom import BloomBlock, BloomConfig | |
use_hivemind_log_handler("in_root_logger") | |
logger = get_logger(__file__) | |
CLIENT_BRANCH = "main" | |
BLOCK_BRANCH_PREFIX = "block_" | |
USER_AGENT = {"file_type": "model", "framework": "pytorch", "from_auto_class": False} | |
FORCE_DOWNLOAD = False | |
RESUME_DOWNLOAD = False | |
LOCAL_FILES_ONLY = False | |
def load_pretrained_block( | |
converted_model_name_or_path: str, | |
block_index: int, | |
config: Optional[BloomConfig] = None, | |
torch_dtype: Union[torch.dtype, str] = "auto", | |
use_auth_token: Optional[str] = None, | |
) -> BloomBlock: | |
"""Load one BloomBlock from a converted model. See convert_model.py (or README.md) on how to convert it.""" | |
if config is None: | |
config = BloomConfig.from_pretrained(converted_model_name_or_path, use_auth_token=use_auth_token) | |
block = BloomBlock(config, layer_number=block_index) | |
state_dict = _load_state_dict(converted_model_name_or_path, block_index, use_auth_token=use_auth_token) | |
block.load_state_dict(state_dict) | |
if torch_dtype == "auto": | |
with torch.no_grad(): | |
for name, param in block.named_parameters(): | |
assert name in state_dict, f"{name} not in state dict" | |
param.data = param.data.to(state_dict[name].dtype) | |
else: | |
assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}" | |
block = block.to(dtype=torch_dtype) | |
report = block.load_state_dict(state_dict, strict=True) | |
logger.info(f"Loaded {converted_model_name_or_path} block {block_index}, {report}") | |
return block | |
def _load_state_dict( | |
pretrained_model_name_or_path: str, block_index: Optional[int] = None, use_auth_token: Optional[str] = None | |
) -> OrderedDict[str, torch.Tensor]: | |
revision = BLOCK_BRANCH_PREFIX + str(block_index) if block_index is not None else CLIENT_BRANCH | |
archive_file = hf_bucket_url(pretrained_model_name_or_path, filename=WEIGHTS_NAME, revision=revision, mirror=None) | |
# Load from URL or cache if already cached | |
resolved_archive_file = cached_path( | |
archive_file, | |
cache_dir=None, | |
force_download=FORCE_DOWNLOAD, | |
proxies=None, | |
resume_download=RESUME_DOWNLOAD, | |
local_files_only=LOCAL_FILES_ONLY, | |
use_auth_token=use_auth_token, | |
user_agent=USER_AGENT, | |
) | |
state_dict = torch.load(resolved_archive_file, map_location="cpu") | |
return state_dict | |
DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto") | |