File size: 15,202 Bytes
8221951
 
014aa64
 
 
8221951
 
7209bc9
 
 
fa9f1ec
 
 
 
 
 
8221951
 
 
 
7209bc9
 
d41febc
 
 
 
 
 
 
 
 
 
 
7209bc9
 
d41febc
 
 
 
 
 
 
 
 
 
 
fa9f1ec
8221951
 
 
 
 
 
 
 
 
 
 
fa9f1ec
 
 
8221951
 
 
 
014aa64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c25d13
 
014aa64
 
 
 
6c25d13
014aa64
f83ce33
014aa64
f83ce33
 
 
 
 
 
014aa64
 
 
 
 
 
 
 
8221951
 
 
 
 
 
 
014aa64
8221951
014aa64
 
 
 
da246ad
014aa64
 
 
 
 
 
 
98cc9d3
014aa64
 
 
 
da246ad
8221951
6c25d13
014aa64
f83ce33
014aa64
b5a5e67
 
014aa64
6c25d13
014aa64
 
b5a5e67
 
8221951
014aa64
 
 
 
b5a5e67
014aa64
 
b5a5e67
 
 
 
014aa64
 
 
b5a5e67
f83ce33
014aa64
b5a5e67
 
 
014aa64
 
6c25d13
 
 
 
014aa64
6c25d13
014aa64
8221951
b5a5e67
 
 
 
 
 
014aa64
8221951
 
014aa64
 
fa9f1ec
014aa64
f83ce33
014aa64
 
fa9f1ec
014aa64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83ce33
 
014aa64
8221951
f83ce33
8221951
014aa64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a5e67
014aa64
 
 
 
 
 
 
 
 
 
 
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83ce33
 
 
 
 
 
8221951
 
 
fa9f1ec
 
 
da246ad
fa9f1ec
 
8221951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b606e4
8221951
 
 
 
 
f83ce33
da246ad
 
 
e7386b4
2cc82f7
f83ce33
da246ad
 
8221951
 
 
 
 
 
 
 
 
 
 
 
da246ad
 
d6e116f
014aa64
 
 
 
 
 
 
f83ce33
014aa64
 
 
 
 
f83ce33
 
 
 
 
 
 
 
 
 
 
 
d6e116f
f83ce33
 
 
 
da246ad
d6e116f
da246ad
014aa64
 
 
d6e116f
2eb2fa2
f83ce33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da246ad
fa9f1ec
 
da246ad
f83ce33
 
 
 
 
 
 
 
 
 
fa9f1ec
 
 
da246ad
f83ce33
 
 
 
 
 
 
 
 
 
fa9f1ec
8221951
f83ce33
 
 
 
 
 
 
 
 
 
 
 
394e502
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import json
import os
import traceback
from typing import List, Tuple

import gradio as gr
import requests
from huggingface_hub import HfApi

hf_api = HfApi()
roots_datasets = {
    dset.id.split("/")[-1]: dset
    for dset in hf_api.list_datasets(
        author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token")
    )
}


def get_docid_html(docid):
    data_org, dataset, docid = docid.split("/")
    metadata = roots_datasets[dataset]
    if metadata.private:
        docid_html = """
        <a title="This dataset is private. See the introductory text for more information"
            style="color:#AA4A44; font-weight: bold; text-decoration:none"
            onmouseover="style='color:#AA4A44; font-weight: bold; text-decoration:underline'"
            onmouseout="style='color:#AA4A44; font-weight: bold; text-decoration:none'"
            href="https://huggingface.co/datasets/bigscience-data/{dataset}"
            target="_blank">
            πŸ”’{dataset}
        </a>
        <span style="color:#7978FF; ">/{docid}</span>""".format(
            dataset=dataset, docid=docid
        )
    else:
        docid_html = """
        <a title="This dataset is licensed {metadata}"
            style="color:#7978FF; font-weight: bold; text-decoration:none"
            onmouseover="style='color:#7978FF; font-weight: bold; text-decoration:underline'"
            onmouseout="style='color:#7978FF; font-weight: bold; text-decoration:none'"
            href="https://huggingface.co/datasets/bigscience-data/{dataset}"
            target="_blank">
            {dataset}
        </a>
        <span style="color:#7978FF; ">/{docid}</span>""".format(
            metadata=metadata.tags[0].split(":")[-1], dataset=dataset, docid=docid
        )
    return docid_html


PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"


def process_pii(text):
    for tag in PII_TAGS:
        text = text.replace(
            PII_PREFIX + tag,
            """<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(
                tag
            ),
        )
    return text


def flag(query, language, num_results, issue_description):
    try:
        post_data = {
            "query": query,
            "k": num_results,
            "flag": True,
            "description": issue_description,
        }
        if language != "detect_language":
            post_data["lang"] = language

        output = requests.post(
            os.environ.get("address"),
            headers={"Content-type": "application/json"},
            data=json.dumps(post_data),
            timeout=120,
        )

        results = json.loads(output.text)
    except:
        print("Error flagging")
    return ""


def format_result(result, highlight_terms, exact_search, datasets_filter=None):
    text, url, docid = result
    if datasets_filter is not None:
        datasets_filter = set(datasets_filter)
        dataset = docid.split("/")[1]
        if not dataset in datasets_filter:
            return ""

    if exact_search:
        query_start = text.find(highlight_terms)
        query_end = query_start + len(highlight_terms)
        tokens_html = text[0:query_start]
        tokens_html += "<b>{}</b>".format(text[query_start:query_end])
        tokens_html += text[query_end:]
    else:
        tokens = text.split()
        tokens_html = []
        for token in tokens:
            if token in highlight_terms:
                tokens_html.append("<b>{}</b>".format(token))
            else:
                tokens_html.append(token)
        tokens_html = " ".join(tokens_html)
    tokens_html = process_pii(tokens_html)

    meta_html = (
        """<p class='underline-on-hover' style='font-size:12px; font-family: Arial; color:#585858; text-align: left;'>
        <a href='{}' target='_blank'>{}</a></p>""".format(
            url, url
        )
        if url is not None
        else ""
    )
    docid_html = get_docid_html(docid)
    language = "FIXME"
    return """{}
          <p style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {}</p>
          <!--  <p style='font-size:12px; font-family: Arial; color:MediumAquaMarine'>Language: {}</p> -->
          <p style='font-family: Arial;'>{}</p>
          <br>
      """.format(
        meta_html, docid_html, language, tokens_html
    )


def format_result_page(
    language, results, highlight_terms, num_results, exact_search, datasets_filter=None
) -> gr.HTML:

    filtered_num_results = 0
    header_html = ""

    # FIX lang detection by normalizing format on the backend
    if language == "detect_language" and not exact_search:
        header_html += """<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
            Detected language: <b> FIX MEEEE !!! </b><hr></p><br>"""

    results_html = ""
    for lang, results_for_lang in results.items():
        if len(results_for_lang) == 0:
            if exact_search:
                results_html += """<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
                    No results found.<hr></p>"""
            else:
                results_html += """<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
                    No results for language: <b>{}</b><hr></p>""".format(
                    lang
                )
            continue
        results_for_lang_html = ""
        for result in results_for_lang:
            result_html = format_result(
                result, highlight_terms, exact_search, datasets_filter
            )
            if result_html != "":
                filtered_num_results += 1
            results_for_lang_html += result_html
        if language == "all" and not exact_search:
            results_for_lang_html = f"""
                <details>
                    <summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
                        Results for language: <b>{lang}</b><hr>
                    </summary>
                    {results_for_lang_html}
                </details>"""
        results_html += results_for_lang_html

    if num_results is not None:
        header_html += """<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
            Total number of matches: <b>{}</b><hr></p><br>""".format(
            filtered_num_results
        )

    return header_html + results_html


def extract_results_from_payload(query, language, payload, exact_search):
    results = payload["results"]

    processed_results = dict()
    datasets = set()
    highlight_terms = None
    num_results = None

    if exact_search:
        highlight_terms = query
        num_results = payload["num_results"]
        results = {language: results}
    else:
        highlight_terms = payload["highlight_terms"]
        # unify format - might be best fixed on server side
        if language != "all":
            results = {language: results}

    for lang, results_for_lang in results.items():
        processed_results[lang] = list()
        for result in results_for_lang:
            text = result["text"]
            url = (
                result["meta"]["url"]
                if "meta" in result
                and result["meta"] is not None
                and "url" in result["meta"]
                else None
            )
            docid = result["docid"]
            _, dataset, _ = docid.split("/")
            datasets.add(dataset)
            processed_results[lang].append((text, url, docid))

    return processed_results, highlight_terms, num_results, list(datasets)


def process_error(error_type):
    if error_type == "unsupported_lang":
        detected_lang = payload["err"]["meta"]["detected_lang"]
        return f"""
            <p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
            Detected language <b>{detected_lang}</b> is not supported.<br>
            Please choose a language from the dropdown or type another query.
            </p><br><hr><br>"""


def extract_error_from_payload(payload):
    if "err" in payload:
        return payload["err"]["type"]
    return None


def request_payload(query, language, exact_search, num_results=10):
    post_data = {"query": query, "k": num_results}
    if language != "detect_language":
        post_data["lang"] = language
    address = "http://34.105.160.81:8080" if exact_search else os.environ.get("address")
    output = requests.post(
        address,
        headers={"Content-type": "application/json"},
        data=json.dumps(post_data),
        timeout=60,
    )
    payload = json.loads(output.text)
    return payload


description = """# <p style="text-align: center;"> 🌸 πŸ”Ž ROOTS search tool πŸ” 🌸 </p>
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""


if __name__ == "__main__":
    demo = gr.Blocks(
        css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }"
    )

    with demo:
        processed_results_state = gr.State([])
        highlight_terms_state = gr.State([])
        num_results_state = gr.State(0)
        exact_search_state = gr.State(False)
        lang_state = gr.State("")

        with gr.Row():
            gr.Markdown(value=description)
        with gr.Row():
            query = gr.Textbox(
                lines=1,
                max_lines=1,
                placeholder="Put your query in double quotes for exact search.",
                label="Query",
            )
        with gr.Row():
            lang = gr.Dropdown(
                choices=[
                    "ar",
                    "ca",
                    "code",
                    "en",
                    "es",
                    "eu",
                    "fr",
                    "id",
                    "indic",
                    "nigercongo",
                    "pt",
                    "vi",
                    "zh",
                    "detect_language",
                    "all",
                ],
                value="en",
                label="Language",
            )
        with gr.Row():
            k = gr.Slider(1, 100, value=10, step=1, label="Max Results")
        with gr.Row():
            submit_btn = gr.Button("Submit")
        with gr.Row(visible=False) as datasets_filter:
            available_datasets = gr.Dropdown(
                type="value",
                choices=[],
                value=[],
                label="Datasets Filter",
                multiselect=True,
            )
        with gr.Row():
            results = gr.HTML(label="Results")
        with gr.Column(visible=False) as flagging_form:
            flag_txt = gr.Textbox(
                lines=1,
                placeholder="Type here...",
                label="""If you choose to flag your search, we will save the query, language and the number of results
                    you requested. Please consider adding relevant additional context below:""",
            )
            flag_btn = gr.Button("Flag Results")
            flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt])

        def submit(query, lang, k, dropdown_input):
            print("submitting", query, lang, k)
            query = query.strip()
            exact_search = False
            if query.startswith('"') and query.endswith('"') and len(query) >= 2:
                exact_search = True
                query = query[1:-1]
            else:
                query = " ".join(query.split())
            if query == "" or query is None:
                return None

            results_html = ""
            payload = request_payload(query, lang, exact_search, k)
            err = extract_error_from_payload(payload)
            if err is not None:
                return process_error(err)

            (
                processed_results,
                highlight_terms,
                num_results,
                datasets,
            ) = extract_results_from_payload(query, lang, payload, exact_search)
            results_html = format_result_page(
                lang, processed_results, highlight_terms, num_results, exact_search
            )

            return {
                processed_results_state: processed_results,
                highlight_terms_state: highlight_terms,
                num_results_state: num_results,
                exact_search_state: exact_search,
                results: results_html,
                flagging_form: gr.update(visible=True),
                datasets_filter: gr.update(visible=True),
                available_datasets: gr.Dropdown.update(
                    choices=datasets, value=datasets
                ),
            }

        def filter_datasets(
            lang,
            processed_results,
            highlight_terms,
            num_results,
            exact_search,
            datasets_filter,
        ):
            results_html = format_result_page(
                lang,
                processed_results,
                highlight_terms,
                num_results,
                exact_search,
                datasets_filter,
            )
            return {results: results_html}

        query.submit(
            fn=submit,
            inputs=[query, lang, k, available_datasets],
            outputs=[
                processed_results_state,
                highlight_terms_state,
                num_results_state,
                exact_search_state,
                results,
                flagging_form,
                datasets_filter,
                available_datasets,
            ],
        )
        submit_btn.click(
            submit,
            inputs=[query, lang, k, available_datasets],
            outputs=[
                processed_results_state,
                highlight_terms_state,
                num_results_state,
                exact_search_state,
                results,
                flagging_form,
                datasets_filter,
                available_datasets,
            ],
        )

        available_datasets.change(
            filter_datasets,
            inputs=[
                lang,
                processed_results_state,
                highlight_terms_state,
                num_results_state,
                exact_search_state,
                available_datasets,
            ],
            outputs=[results],
        )
    demo.launch(enable_queue=True, debug=True)