Terry Zhuo
fix
ae7a86d
raw
history blame
4.32 kB
# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
from dataclasses import dataclass
import plotly.graph_objects as go
from transformers import AutoConfig
import plotly.express as px
import numpy as np
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
def fields(raw_class):
return [
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
]
@dataclass(frozen=True)
class AutoEvalColumn: # Auto evals column
model_type_symbol = ColumnContent("type", "str", True)
model = ColumnContent("model", "markdown", True)
complete_score = ColumnContent("complete", "number", True)
instruct_score = ColumnContent("instruct", "number", True)
elo_mle = ColumnContent("elo_mle", "number", True)
dummy = ColumnContent("model", "str", True)
size = ColumnContent("size", "number", False)
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def make_clickable_names(df):
df["model"] = df.apply(
lambda row: model_hyperlink(row["link"], row["model"]), axis=1
)
return df
def plot_elo_mle(df):
fig = px.scatter(df, x="model", y="rating", error_y="error_y",
error_y_minus="error_y_minus",
# title="Bootstrap of Elo MLE Estimates (BigCodeBench-Complete)"
)
fig.update_layout(xaxis_title="Model",
yaxis_title="Rating",
autosize=True,
# width=1300,
# height=900,
)
return fig
def plot_solve_rate(df, task, rows=30, cols=38):
keys = df["task_id"]
values = df["solve_rate"]
values = np.array(values)
n = len(values)
if rows is None or cols is None:
cols = int(math.sqrt(n))
rows = cols if cols * cols >= n else cols + 1
while rows * cols < n:
cols += 1
values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols))
keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols))
hover_text = np.empty_like(values, dtype=object)
for i in range(rows):
for j in range(cols):
if not np.isnan(values[i, j]):
hover_text[i, j] = f"{keys[i, j]}<br>Solve Rate: {values[i, j]:.2f}"
else:
hover_text[i, j] = "NaN"
fig = go.Figure(data=go.Heatmap(
z=values,
text=hover_text,
hoverinfo='text',
colorscale='teal',
zmin=0,
zmax=100
))
fig.update_layout(
title=f'BigCodeBench-{task}',
xaxis_nticks=cols,
yaxis_nticks=rows,
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=False),
autosize=True,
# width=760,
# height=600,
)
return fig
def styled_error(error):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
def styled_warning(warn):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
def styled_message(message):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
def has_no_nan_values(df, columns):
return df[columns].notna().all(axis=1)
def has_nan_values(df, columns):
return df[columns].isna().any(axis=1)
def is_model_on_hub(model_name: str, revision: str) -> bool:
try:
AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False)
return True, None
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
)
except Exception as e:
print(f"Could not get the model config from the hub.: {e}")
return False, "was not found on hub!"