|
|
|
import json |
|
import os |
|
from datetime import datetime, timezone |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
from huggingface_hub import HfApi |
|
|
|
from src.css_html import custom_css |
|
from src.text_content import ABOUT_TEXT, SUBMISSION_TEXT_3 |
|
from src.utils import ( |
|
AutoEvalColumn, |
|
fields, |
|
is_model_on_hub, |
|
make_clickable_names, |
|
plot_elo_mle, |
|
plot_solve_rate, |
|
styled_error, |
|
styled_message, |
|
) |
|
from datasets import load_dataset |
|
TOKEN = os.environ.get("TOKEN", None) |
|
api = HfApi(TOKEN) |
|
df = load_dataset("bigcode/bigcodebench-results", split="train").to_pandas().sort_values("complete", ascending=False) |
|
elo_mle_df = load_dataset("bigcode/bigcodebench-elo", split="train").to_pandas() |
|
complete_solve_rate = load_dataset("bigcode/bigcodebench-complete-solve-rate", split="train").to_pandas() |
|
instruct_solve_rate = load_dataset("bigcode/bigcodebench-instruct-solve-rate", split="train").to_pandas() |
|
|
|
QUEUE_REPO = "bigcode/bigcodebench-requests" |
|
EVAL_REQUESTS_PATH = "eval-queue" |
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [ |
|
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden |
|
] |
|
TYPES_LITE = [ |
|
c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden |
|
] |
|
|
|
|
|
def add_new_eval( |
|
model: str, |
|
revision: str, |
|
model_type: str, |
|
): |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
if model_type is None or model_type == "": |
|
return styled_error("Please select a model type.") |
|
|
|
|
|
if revision == "": |
|
revision = "main" |
|
|
|
model_on_hub, error = is_model_on_hub(model, revision) |
|
if not model_on_hub: |
|
return styled_error(f'Model "{model}" {error}') |
|
|
|
print("adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"revision": revision, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
"model_type": model_type.split(" ")[1], |
|
} |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
user_name = model.split("/")[0] |
|
model_path = model.split("/")[1] |
|
|
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request.json" |
|
print(f"Saving eval request to {out_path}") |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path.split("eval-queue/")[1], |
|
repo_id=QUEUE_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {model} to eval queue", |
|
) |
|
|
|
|
|
os.remove(out_path) |
|
|
|
return styled_message("Your request has been submitted to the evaluation queue!\n") |
|
|
|
|
|
def select_columns(df, columns): |
|
always_here_cols = [ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_items(df, leaderboard_table, query): |
|
if query == "all": |
|
return df[leaderboard_table.columns] |
|
else: |
|
query = query[0] |
|
filtered_df = df[df["type"].str.contains(query, na=False)] |
|
return filtered_df[leaderboard_table.columns] |
|
|
|
|
|
def search_table(df, leaderboard_table, query): |
|
filtered_df = df[(df["model"].str.contains(query, case=False))] |
|
return filtered_df[leaderboard_table.columns] |
|
|
|
|
|
df = make_clickable_names(df) |
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
with gr.Row(): |
|
gr.Markdown( |
|
"""<div style="text-align: center;"><h1> 🌸<span style='color: #A74E95;'>Big</span><span style='color: #C867B5;'>Code</span><span style='color: #DD71C8;'>Bench</span> Leaderboard🌸</h1></div>\ |
|
<br>\ |
|
<p>Inspired from the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">🤗 Open LLM Leaderboard</a> and <a href="https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard">⭐ Big Code Models Leaderboard</a>, we compare performance of LLMs on <a href="https://huggingface.co/datasets/bigcode/bigcodebench">BigCodeBench</a> benchmark.</p> |
|
""", |
|
elem_classes="markdown-text", |
|
) |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.Column(): |
|
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: |
|
with gr.TabItem("🔍 Evaluation table", id=0): |
|
with gr.Column(): |
|
with gr.Accordion("➡️ See All Columns", open=False): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c |
|
for c in COLS |
|
if c |
|
not in [ |
|
AutoEvalColumn.dummy.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.model_type_symbol.name, |
|
] |
|
], |
|
value=[ |
|
c |
|
for c in COLS_LITE |
|
if c |
|
not in [ |
|
AutoEvalColumn.dummy.name, |
|
AutoEvalColumn.model.name, |
|
AutoEvalColumn.model_type_symbol.name, |
|
] |
|
], |
|
label="", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
|
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder="🔍 Search for your model and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
filter_columns = gr.Radio( |
|
label="⏚ Filter model types", |
|
choices=["all", "🟢 base", "🔶 instruction-tuned", "EXT external-evaluation"], |
|
value="all", |
|
elem_id="filter-columns", |
|
) |
|
|
|
leaderboard_df = gr.components.Dataframe( |
|
value=df[ |
|
[ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
+ shown_columns.value |
|
], |
|
headers=[ |
|
AutoEvalColumn.model_type_symbol.name, |
|
AutoEvalColumn.model.name, |
|
] |
|
+ shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
) |
|
|
|
hidden_leaderboard_df = gr.components.Dataframe( |
|
value=df, |
|
headers=COLS, |
|
datatype=["str" for _ in range(len(COLS))], |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
search_table, |
|
[hidden_leaderboard_df, leaderboard_df, search_bar], |
|
leaderboard_df, |
|
) |
|
filter_columns.change( |
|
filter_items, |
|
[hidden_leaderboard_df, leaderboard_df, filter_columns], |
|
leaderboard_df, |
|
) |
|
shown_columns.change( |
|
select_columns, |
|
[hidden_leaderboard_df, shown_columns], |
|
leaderboard_df, |
|
) |
|
gr.Markdown( |
|
""" |
|
**Notes:** |
|
- _Complete_ vs _Instruct_: |
|
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding. |
|
- <u>Instruct</u> (🔥Vibe Check🔥): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code. |
|
- `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants. |
|
- `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on `BigCodeBench-Complete`. |
|
- `size` is the amount of activated model weight during inference. |
|
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. |
|
- For more details check the 📝 About section. |
|
- Models with a 🔴 symbol represent external evaluation submission, this means that we didn't verify the results, you can find the author's submission under `Submission PR` field from `See All Columns` tab. |
|
""", |
|
elem_classes="markdown-text", |
|
) |
|
|
|
with gr.TabItem("📊 Elo Rating", id=1): |
|
with gr.Column(): |
|
elo_map = gr.Plot() |
|
demo.load(plot_elo_mle, [gr.Dataframe(elo_mle_df, visible=False)], elo_map) |
|
|
|
with gr.TabItem("🧩 Solve Rate", id=2): |
|
with gr.Column(): |
|
complete_map = gr.Plot() |
|
demo.load(plot_solve_rate, [gr.Dataframe(complete_solve_rate, visible=False), |
|
gr.Textbox("Complete", visible=False), |
|
], complete_map) |
|
instruct_map = gr.Plot() |
|
demo.load(plot_solve_rate, [gr.Dataframe(instruct_solve_rate, visible=False), |
|
gr.Textbox("Instruct", visible=False), |
|
], instruct_map) |
|
|
|
with gr.TabItem("📝 About", id=3): |
|
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") |
|
with gr.TabItem("Submit results 🚀", id=4): |
|
gr.Markdown(SUBMISSION_TEXT_3) |
|
|
|
|
|
demo.launch() |
|
|