File size: 12,670 Bytes
aca9a0c
 
 
55f4d70
aca9a0c
 
828190b
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de45929
aca9a0c
 
 
 
a2d883f
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
2480d21
aca9a0c
 
 
dff8ab5
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
aca9a0c
 
0ee99b8
aca9a0c
 
 
 
 
 
0ee99b8
aca9a0c
 
 
 
 
 
 
de45929
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
 
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de45929
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
aca9a0c
 
0ee99b8
aca9a0c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
import json
import multiprocessing
import os
import pickle
import threading
import time
from collections import Counter, defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed, wait, FIRST_COMPLETED
from datetime import datetime
from typing import Any, Dict, List, Tuple
from warnings import warn

import numpy as np
from termcolor import cprint
from tqdm import tqdm

from bigcodebench.data import get_bigcodebench, get_bigcodebench_hash, load_solutions
from bigcodebench.data.utils import CACHE_DIR
from bigcodebench.eval import PASS, compatible_eval_result, estimate_pass_at_k, untrusted_check
from bigcodebench.gen.util import trusted_check

Result = Tuple[str, List[bool]]


def get_groundtruth(n_workers, problems, hashcode, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit):
    cache_file = os.path.join(CACHE_DIR, f"{hashcode}.pkl")
    if os.path.exists(cache_file):
        if check_gt_only:
            os.remove(cache_file)
        else:
            print(f"Load from ground-truth from {cache_file}")
            with open(cache_file, "rb") as f:
                return pickle.load(f)

    os.makedirs(CACHE_DIR, exist_ok=True)
    print("\nAsserting the groundtruth...")
    tbegin = time.time()
    
    with ProcessPoolExecutor(max_workers=n_workers) as executor:
        futures = []
        n_samples = 0
        expected_time = dict()
        
        for problem in problems.values():
            args = (
                problem["complete_prompt"] + "\n" + problem["canonical_solution"],
                problem["test"],
                problem["task_id"],
                max_as_limit,
                max_data_limit,
                max_stack_limit,
                min_time_limit,
            )
            
            futures.append(executor.submit(trusted_check, *args))
            n_samples += 1

        for future in tqdm(as_completed(futures), total=n_samples):
            result = future.result()
            expected_time[result["task_id"]] = result["time"]
    
    print(f"Expected outputs computed in {time.time() - tbegin:.2f}s")
    
    if any(expected_time.values()):
        with open(cache_file, "wb") as f:
            pickle.dump(expected_time, f)

    return expected_time


def check_correctness(
    completion_id: int,
    problem: Dict[str, Any],
    solution: str,
    max_as_limit: float,
    max_data_limit: float,
    max_stack_limit: float,
    identifier=None,
    min_time_limit: float = 0.1,
    gt_time_limit: float = 2.0,
) -> Dict[str, Result]:  
    ret = {
        "completion_id": completion_id,
        "task_id": problem["task_id"],
        "_identifier": identifier,
        "solution": solution,
    }
    ret["base"] = untrusted_check(
        solution,
        problem["test"],
        problem["entry_point"],
        max_as_limit,
        max_data_limit,
        max_stack_limit,
        min_time_limit,
        gt_time_limit,
    )
    return ret


def evaluate(
    split: str,
    subset: str,
    samples: str,
    pass_k: str="1,5,10",
    parallel: int = None,
    min_time_limit: float = 1,
    max_as_limit: int = 30 * 1024,
    max_data_limit: int = 30 * 1024,
    max_stack_limit: int = 10,
    check_gt_only: bool = False,
    no_gt: bool = False,
):
    pass_k = [int(k.strip()) for k in pass_k.split(',') if k.strip().isdigit()]
    if parallel is None:
        n_workers = max(1, multiprocessing.cpu_count() // 2)
    else:
        n_workers = parallel

    if check_gt_only:
        samples = "__dummy__.jsonl"

    extra = subset + "_" if subset != "full" else ""
    if os.path.isdir(samples):
        result_path = os.path.join(samples, f"{extra}eval_results.json")
    else:
        assert samples.endswith(".jsonl")
        result_path = samples.replace(".jsonl", f"_{extra}eval_results.json")

    problems = get_bigcodebench(subset=subset)
    dataset_hash = get_bigcodebench_hash(subset=subset)
    
    if not no_gt:
        expected_time = get_groundtruth(n_workers, problems, dataset_hash, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit)
    else:
        expected_time = {task_id: None for task_id in problems}
    
    gt_pass_rate = np.mean([1 if v is not None else 0 for k, v in expected_time.items() if k in problems])
    failed_tasks = [k for k, v in expected_time.items() if v is None and k in problems]
    
    if os.path.isfile(result_path):
        with open(result_path, "r") as f:
            results = json.load(f)
        results = compatible_eval_result(results)
    else:
        if check_gt_only:
            if gt_pass_rate > 0.99:
                cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
            else:
                cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
            if len(failed_tasks) > 0:
                cprint(f"Failed tasks: {failed_tasks}", "red")
            return {"gt_pass_rate":float(gt_pass_rate), "failed_tasks": failed_tasks}
        
        results = {
            "date": datetime.now().strftime("%Y-%m-%d %H:%M"),
            "eval": {},
        }

        with ProcessPoolExecutor(max_workers=n_workers) as executor:
            futures = []
            completion_id = Counter()
            n_samples = 0
            eval_results = defaultdict(list)  # task_id ->
            remainings = set()

            print("Reading samples...")
            for sample in tqdm(load_solutions(samples)):
                task_id = sample["task_id"]
                
                if task_id not in problems:
                    warn(
                        f"Task {task_id} is found in the samples but not found in the dataset"
                    )
                    continue
                solution = (
                    sample["solution"]
                    if "solution" in sample
                    else problems[task_id]["complete_prompt"] + sample["completion"]
                )
                if "sanitized-calibrated" in samples:
                    solution = problems[task_id]["code_prompt"] + "\n    pass\n" + solution
                remainings.add(sample["_identifier"])
                args = (
                    completion_id[task_id],
                    problems[task_id],
                    solution,
                    max_as_limit,
                    max_data_limit,
                    max_stack_limit,
                    sample["_identifier"],
                    min_time_limit,
                    expected_time[task_id] if expected_time[task_id] else 20
                )
                futures.append(executor.submit(check_correctness, *args))
                completion_id[task_id] += 1
                n_samples += 1

            assert n_samples == len(remainings), "Missing problems in unfinished"
            assert len(completion_id) == len(problems), "Missing problems in samples"

            def stucking_checker():
                not_done = futures
                while len(not_done) > 0:
                    done, not_done = wait(not_done, timeout=240, return_when=FIRST_COMPLETED)

                    if len(done) == 0:
                        warn("No samples have finished testing in the last 240s")
                        warn(f"{len(remainings)} samples to be tested: {remainings}")

            threading.Thread(target=stucking_checker).start()

            for future in tqdm(as_completed(futures), total=n_samples):
                result = future.result()
                remainings.remove(result["_identifier"])
                eval_results[result["task_id"]].append(result)


        # sort the results for each problem by completion_id
        for task_id, task_results in eval_results.items():
            task_results.sort(key=lambda x: x["completion_id"])
            results["eval"][task_id] = []
            for res in task_results:
                stat, details = res["base"]
                results["eval"][task_id].append(
                    {
                        "task_id": task_id,
                        "solution": res["solution"],
                        "status": stat,
                        "details": details,
                    }
                )

    # Calculate pass@k.
    total = np.array([len(r) for k, r in results["eval"].items() if k in problems])
    base_correct = []

    for key, res in results["eval"].items():
        if key not in problems:
            continue
        bc = sum([r["status"] == PASS for r in res])
        base_correct.append(bc)

    base_correct = np.array(base_correct)

    pass_at_k = {
        f"pass@{k}": float(estimate_pass_at_k(total, base_correct, k).mean())
        for k in pass_k
        if total.min() >= k
    }
    pass_at_k["gt_pass_rate"] = float(gt_pass_rate)
    pass_at_k["failed_tasks"] = failed_tasks
    return pass_at_k

    # mode = "-calibrated" if "sanitized-calibrated" in samples else ""
    # extra = subset.capitalize()
    # split = split.capitalize()
    # cprint(f"BigCodeBench-{split}{mode} ({extra})", "green")
        
    # if no_gt:
    #     cprint(f"Groundtruth is not checked", "yellow")
    # else:
    #     if gt_pass_rate > 0.99:
    #         cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
    #     else:
    #         cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
        
    #     if len(failed_tasks) > 0:
    #         cprint(f"Failed tasks: {failed_tasks}", "red")
    
    # for k, v in pass_at_k.items():
    #     cprint(f"{k}:\t{v:.3f}", "green")

    # # save results
    # if os.path.isfile(result_path):
    #     decision = ""
    #     while decision.lower() not in ["y", "n"]:
    #         print(f"{result_path} already exists. Press [Y/N] to overwrite or exit...")
    #         decision = input()

    #     if decision.lower() == "y":
    #         # mv the file to a backup
    #         new_path = result_path + ".bak"
    #         while os.path.isfile(new_path):
    #             new_path += ".bak"
    #         os.rename(result_path, new_path)
    #         print(f"Backup {result_path} to {new_path}")

    # if not os.path.isfile(result_path):
    #     with open(result_path, "w") as f:
    #         json.dump(results, f, indent=2)

    # if save_pass_rate:
    #     pass_at_k_path = result_path.replace("_eval_results.json", "_pass_at_k.json")
    #     pass_at_k["model"] = os.path.basename(samples).split("--bigcodebench-")[0]
    #     pass_at_k["calibrated"] = "sanitized-calibrated" in samples
    #     pass_at_k["subset"] = subset

    #     def save_pass_at_k():
    #         with open(pass_at_k_path, "w") as f:
    #             json.dump(pass_at_k, f, indent=2)

    #     if os.path.isfile(pass_at_k_path):
    #         saved_pass_at_k = json.load(open(pass_at_k_path, "r"))
    #         # compare saved_pass_at_k with pass_at_k
    #         for k in saved_pass_at_k.keys():
    #             if pass_at_k[k] != saved_pass_at_k[k]:
    #                 cprint(f"Warning: {k} is different from the saved one", "yellow")
                    
    #         # ask user whether to save the pass@k
    #         decision = ""
    #         while decision.lower() not in ["y", "n"]:
    #             print(f"Save pass@k to {pass_at_k_path}? [Y/N]")
    #             decision = input()
    #         if decision.lower() == "y":
    #             save_pass_at_k()
                
    #     else:
    #         save_pass_at_k()

def run_gradio():
    interface = gr.Interface(
        fn=evaluate,
        inputs=[
            gr.Dropdown(["complete", "instruct"], label="Split"),
            gr.Dropdown(["full", "hard"], label="Subset"),
            gr.File(label="Samples Path (.jsonl)"),
            gr.Textbox(label="Pass k Values (comma-separated)", value="1,5,10"),
            gr.Slider(1, multiprocessing.cpu_count(), step=1, label="Parallel Workers"),
            gr.Slider(0.1, 10, step=0.1, label="Min Time Limit", value=1),
            gr.Slider(1, 100 * 1024, step=1024, label="Max AS Limit", value=30 * 1024),
            gr.Slider(1, 100 * 1024, step=1024, label="Max Data Limit", value=30 * 1024),
            gr.Slider(1, 100, step=1, label="Max Stack Limit", value=10),
            gr.Checkbox(label="Check GT Only"),
            gr.Checkbox(label="No GT"),
        ],
        outputs="text",
        # concurrency_limit=None
    )
    interface.queue(default_concurrency_limit=None)
    interface.launch(show_error=True)

if __name__ == "__main__":
    run_gradio()
    # evaluate("complete", "hard", "meta-llama--Llama-3.2-3B-Instruct--bigcodebench-instruct--vllm-0-1.jsonl")