File size: 12,670 Bytes
aca9a0c 55f4d70 aca9a0c 828190b aca9a0c de45929 aca9a0c a2d883f aca9a0c 2480d21 aca9a0c dff8ab5 aca9a0c 0ee99b8 aca9a0c 0ee99b8 aca9a0c 0ee99b8 aca9a0c de45929 aca9a0c 0ee99b8 aca9a0c 0ee99b8 aca9a0c de45929 aca9a0c 0ee99b8 aca9a0c 0ee99b8 aca9a0c 0ee99b8 aca9a0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import gradio as gr
import json
import multiprocessing
import os
import pickle
import threading
import time
from collections import Counter, defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed, wait, FIRST_COMPLETED
from datetime import datetime
from typing import Any, Dict, List, Tuple
from warnings import warn
import numpy as np
from termcolor import cprint
from tqdm import tqdm
from bigcodebench.data import get_bigcodebench, get_bigcodebench_hash, load_solutions
from bigcodebench.data.utils import CACHE_DIR
from bigcodebench.eval import PASS, compatible_eval_result, estimate_pass_at_k, untrusted_check
from bigcodebench.gen.util import trusted_check
Result = Tuple[str, List[bool]]
def get_groundtruth(n_workers, problems, hashcode, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit):
cache_file = os.path.join(CACHE_DIR, f"{hashcode}.pkl")
if os.path.exists(cache_file):
if check_gt_only:
os.remove(cache_file)
else:
print(f"Load from ground-truth from {cache_file}")
with open(cache_file, "rb") as f:
return pickle.load(f)
os.makedirs(CACHE_DIR, exist_ok=True)
print("\nAsserting the groundtruth...")
tbegin = time.time()
with ProcessPoolExecutor(max_workers=n_workers) as executor:
futures = []
n_samples = 0
expected_time = dict()
for problem in problems.values():
args = (
problem["complete_prompt"] + "\n" + problem["canonical_solution"],
problem["test"],
problem["task_id"],
max_as_limit,
max_data_limit,
max_stack_limit,
min_time_limit,
)
futures.append(executor.submit(trusted_check, *args))
n_samples += 1
for future in tqdm(as_completed(futures), total=n_samples):
result = future.result()
expected_time[result["task_id"]] = result["time"]
print(f"Expected outputs computed in {time.time() - tbegin:.2f}s")
if any(expected_time.values()):
with open(cache_file, "wb") as f:
pickle.dump(expected_time, f)
return expected_time
def check_correctness(
completion_id: int,
problem: Dict[str, Any],
solution: str,
max_as_limit: float,
max_data_limit: float,
max_stack_limit: float,
identifier=None,
min_time_limit: float = 0.1,
gt_time_limit: float = 2.0,
) -> Dict[str, Result]:
ret = {
"completion_id": completion_id,
"task_id": problem["task_id"],
"_identifier": identifier,
"solution": solution,
}
ret["base"] = untrusted_check(
solution,
problem["test"],
problem["entry_point"],
max_as_limit,
max_data_limit,
max_stack_limit,
min_time_limit,
gt_time_limit,
)
return ret
def evaluate(
split: str,
subset: str,
samples: str,
pass_k: str="1,5,10",
parallel: int = None,
min_time_limit: float = 1,
max_as_limit: int = 30 * 1024,
max_data_limit: int = 30 * 1024,
max_stack_limit: int = 10,
check_gt_only: bool = False,
no_gt: bool = False,
):
pass_k = [int(k.strip()) for k in pass_k.split(',') if k.strip().isdigit()]
if parallel is None:
n_workers = max(1, multiprocessing.cpu_count() // 2)
else:
n_workers = parallel
if check_gt_only:
samples = "__dummy__.jsonl"
extra = subset + "_" if subset != "full" else ""
if os.path.isdir(samples):
result_path = os.path.join(samples, f"{extra}eval_results.json")
else:
assert samples.endswith(".jsonl")
result_path = samples.replace(".jsonl", f"_{extra}eval_results.json")
problems = get_bigcodebench(subset=subset)
dataset_hash = get_bigcodebench_hash(subset=subset)
if not no_gt:
expected_time = get_groundtruth(n_workers, problems, dataset_hash, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit)
else:
expected_time = {task_id: None for task_id in problems}
gt_pass_rate = np.mean([1 if v is not None else 0 for k, v in expected_time.items() if k in problems])
failed_tasks = [k for k, v in expected_time.items() if v is None and k in problems]
if os.path.isfile(result_path):
with open(result_path, "r") as f:
results = json.load(f)
results = compatible_eval_result(results)
else:
if check_gt_only:
if gt_pass_rate > 0.99:
cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
else:
cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
if len(failed_tasks) > 0:
cprint(f"Failed tasks: {failed_tasks}", "red")
return {"gt_pass_rate":float(gt_pass_rate), "failed_tasks": failed_tasks}
results = {
"date": datetime.now().strftime("%Y-%m-%d %H:%M"),
"eval": {},
}
with ProcessPoolExecutor(max_workers=n_workers) as executor:
futures = []
completion_id = Counter()
n_samples = 0
eval_results = defaultdict(list) # task_id ->
remainings = set()
print("Reading samples...")
for sample in tqdm(load_solutions(samples)):
task_id = sample["task_id"]
if task_id not in problems:
warn(
f"Task {task_id} is found in the samples but not found in the dataset"
)
continue
solution = (
sample["solution"]
if "solution" in sample
else problems[task_id]["complete_prompt"] + sample["completion"]
)
if "sanitized-calibrated" in samples:
solution = problems[task_id]["code_prompt"] + "\n pass\n" + solution
remainings.add(sample["_identifier"])
args = (
completion_id[task_id],
problems[task_id],
solution,
max_as_limit,
max_data_limit,
max_stack_limit,
sample["_identifier"],
min_time_limit,
expected_time[task_id] if expected_time[task_id] else 20
)
futures.append(executor.submit(check_correctness, *args))
completion_id[task_id] += 1
n_samples += 1
assert n_samples == len(remainings), "Missing problems in unfinished"
assert len(completion_id) == len(problems), "Missing problems in samples"
def stucking_checker():
not_done = futures
while len(not_done) > 0:
done, not_done = wait(not_done, timeout=240, return_when=FIRST_COMPLETED)
if len(done) == 0:
warn("No samples have finished testing in the last 240s")
warn(f"{len(remainings)} samples to be tested: {remainings}")
threading.Thread(target=stucking_checker).start()
for future in tqdm(as_completed(futures), total=n_samples):
result = future.result()
remainings.remove(result["_identifier"])
eval_results[result["task_id"]].append(result)
# sort the results for each problem by completion_id
for task_id, task_results in eval_results.items():
task_results.sort(key=lambda x: x["completion_id"])
results["eval"][task_id] = []
for res in task_results:
stat, details = res["base"]
results["eval"][task_id].append(
{
"task_id": task_id,
"solution": res["solution"],
"status": stat,
"details": details,
}
)
# Calculate pass@k.
total = np.array([len(r) for k, r in results["eval"].items() if k in problems])
base_correct = []
for key, res in results["eval"].items():
if key not in problems:
continue
bc = sum([r["status"] == PASS for r in res])
base_correct.append(bc)
base_correct = np.array(base_correct)
pass_at_k = {
f"pass@{k}": float(estimate_pass_at_k(total, base_correct, k).mean())
for k in pass_k
if total.min() >= k
}
pass_at_k["gt_pass_rate"] = float(gt_pass_rate)
pass_at_k["failed_tasks"] = failed_tasks
return pass_at_k
# mode = "-calibrated" if "sanitized-calibrated" in samples else ""
# extra = subset.capitalize()
# split = split.capitalize()
# cprint(f"BigCodeBench-{split}{mode} ({extra})", "green")
# if no_gt:
# cprint(f"Groundtruth is not checked", "yellow")
# else:
# if gt_pass_rate > 0.99:
# cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}", "green")
# else:
# cprint(f"Groundtruth pass rate: {gt_pass_rate:.3f}\nPlease be cautious!", "red")
# if len(failed_tasks) > 0:
# cprint(f"Failed tasks: {failed_tasks}", "red")
# for k, v in pass_at_k.items():
# cprint(f"{k}:\t{v:.3f}", "green")
# # save results
# if os.path.isfile(result_path):
# decision = ""
# while decision.lower() not in ["y", "n"]:
# print(f"{result_path} already exists. Press [Y/N] to overwrite or exit...")
# decision = input()
# if decision.lower() == "y":
# # mv the file to a backup
# new_path = result_path + ".bak"
# while os.path.isfile(new_path):
# new_path += ".bak"
# os.rename(result_path, new_path)
# print(f"Backup {result_path} to {new_path}")
# if not os.path.isfile(result_path):
# with open(result_path, "w") as f:
# json.dump(results, f, indent=2)
# if save_pass_rate:
# pass_at_k_path = result_path.replace("_eval_results.json", "_pass_at_k.json")
# pass_at_k["model"] = os.path.basename(samples).split("--bigcodebench-")[0]
# pass_at_k["calibrated"] = "sanitized-calibrated" in samples
# pass_at_k["subset"] = subset
# def save_pass_at_k():
# with open(pass_at_k_path, "w") as f:
# json.dump(pass_at_k, f, indent=2)
# if os.path.isfile(pass_at_k_path):
# saved_pass_at_k = json.load(open(pass_at_k_path, "r"))
# # compare saved_pass_at_k with pass_at_k
# for k in saved_pass_at_k.keys():
# if pass_at_k[k] != saved_pass_at_k[k]:
# cprint(f"Warning: {k} is different from the saved one", "yellow")
# # ask user whether to save the pass@k
# decision = ""
# while decision.lower() not in ["y", "n"]:
# print(f"Save pass@k to {pass_at_k_path}? [Y/N]")
# decision = input()
# if decision.lower() == "y":
# save_pass_at_k()
# else:
# save_pass_at_k()
def run_gradio():
interface = gr.Interface(
fn=evaluate,
inputs=[
gr.Dropdown(["complete", "instruct"], label="Split"),
gr.Dropdown(["full", "hard"], label="Subset"),
gr.File(label="Samples Path (.jsonl)"),
gr.Textbox(label="Pass k Values (comma-separated)", value="1,5,10"),
gr.Slider(1, multiprocessing.cpu_count(), step=1, label="Parallel Workers"),
gr.Slider(0.1, 10, step=0.1, label="Min Time Limit", value=1),
gr.Slider(1, 100 * 1024, step=1024, label="Max AS Limit", value=30 * 1024),
gr.Slider(1, 100 * 1024, step=1024, label="Max Data Limit", value=30 * 1024),
gr.Slider(1, 100, step=1, label="Max Stack Limit", value=10),
gr.Checkbox(label="Check GT Only"),
gr.Checkbox(label="No GT"),
],
outputs="text",
# concurrency_limit=None
)
interface.queue(default_concurrency_limit=None)
interface.launch(show_error=True)
if __name__ == "__main__":
run_gradio()
# evaluate("complete", "hard", "meta-llama--Llama-3.2-3B-Instruct--bigcodebench-instruct--vllm-0-1.jsonl")
|